DEBUGGING PROGRAMS

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE
(Autonomous)
Coimbatore -641049
Aceredited by NAAC (Cyele- IIDwith ‘A+’ Grade
(Recognised by UGC, Approved by AICTE, New Delhi and
Affiliated to Bharathiar University , Coimbatore

1rY 114

UNIT - 1lI

Dr.A.DEVI

Associate Professor

Department of Computer Applications
DRSNSRCAS

DEBUGGING PROGRAMS

Debugging Programs

This chapter will introduce the ABAP debugger, and will introduce some of the tools which
can be used to ensure that the programs you create function as intended. It will also show
ways to highlight logic bugs in programs that cannot be identified by the syntax checker.

The first step here is to load a program which has been used previously, and which ac-
cesses the database table which has been created regarding employee records. If you have
been following along with instructions, load program “Z Employee List 01” into the
ABAP Editor.

The program contains a number of SELECT loops, which in turn write the contents of the
table being read to the output screen in several ways, separated by ULINE statements:

REPORT =z employee list 01 LINE-SIZE 132

TABLES zemployees.

AR TR IR N R E R IR TR ER NIRRT ERIR IR TR Y

SELECT * FROM zemployees. " Basic Select Loop
WRITE zemployess.

ERDSELECT.

ULINE.

SELECT * FROM zemployees, “ Bagic Select Loop with a LIRE-BREAK
WRITE / zeuwployees.
ERDSELECT.

ULINE.

SELECT * FROM zemployees. " Basic Select Loop with a LINE-BREAK
WRITE zemployees. " aftervthe first row is output.
WRITE /.

ERDSELECT.

ULINE.

SKIP 2.

SELECT * FROM zemployees. " Basic Select Loop with a SKIP statement
WRITE / zemployees.

ERDSELECT.

DEBUGGING PROGRAMS

Having examined the code, return to the front screen of the ABAP editor.

DEBUGGING PROGRAMS

Firstly, on this screen you will notice there is a ‘Debugging’ button in the toolbar (also ac-
cessible with SHIFT+F5):

ABAP Editor: Initial Screen
ga 1 O R O D Ooebugong Bwith vaiant @ variants

[My rp—
Program Nz ERPLOTEE LIST 01 j/n]| Create |

Click this with the program name in the program input text box to start a new debugging

session. When this opens, a blue arrow should be visible, pointing at the first line of code in
the program:

ABAP Debugger

Gg L3 B 2 [watchpont

Fields | Table | Breskpoints | watchpoints | Cals | Overview | settings |
Main Program 'z_EMPLOYEE_LIST 01 — <] Y&
Sowrcecode of |7 _EMPLOYEE LIST 01 N a v &3
| EVENT START-OF-SELECTION
. t& ___ *

& +
*& *
‘& ___ *

= RE!I)RT z_employee list 01 LINE-3IZE 132

An alternative way of starting a debugging session is to display the code itself from the
initial screen, select a line of code and set a breakpoint. This is done by, having selected a
line, clicking the Stop icon: @

This sets a breakpoint for that line. When the program is then executed the execution will
pause highlighting the line that has the Breakpoint set entering the debugging session.
Usually, this is the easiest method to use, as one will often have a good idea of where the

DEBUGGING PROGRAMS

issues in a program are allowing you to focus on specific areas of code straight away, rather
than starting from the very beginning of a program as the previous method does:

SELECT " FROM zemployses, " Basic Select Loop with a LINE-BREAK
WRITE / zemployees.
ENDSELECT.
=p @ SELECT * FRON zemployees, " Baszic Select Loop with a LINE-BREAK

WRITE / zemployees.
ENDSELECT.

There are two types of breakpoint which can be set in a program. Static (which will be ex-
amined later) and dynamic. A dynamic breakpoint is the kind which was used above, and
these are only valid for the current session. If one leaves the SAP GUI and returns later, any
dynamic breakpoints set will no longer exist. A breakpoint can also be set by double-
clicking any statement within the debugging session itself. To then remove these in the
session, simple double-click the stop icon appearing adjacent to them.

You will notice that a number of buttons appear at the top of the debugging screen:

ABAP Debugger
g (5 ¢F IF 0O 'v’v'atchpoin&

Fields | Table | Breakpoints | watchpoints | cals | overview | Settings |

These buttons allow for different modes of the ABAP debugger to be entered. The default
mode here is Fields.

The ‘Single step’ button, the first on the left in the row above the modes, also accessible
with F5, allows one to go through the code within the debugger line-by-line, or indeed as its
name would suggest, single steps. As one presses the button, the blue arrow on the left of
the code will move down one line at a time.

The next button along is the ‘Execute’ button, with a shortcut of F6. This allows for inde-
pendent sections of code to be executed, such as function modules or forms. This can be
very useful. If a program includes existing sections of code already created in an SAP sys-

DEBUGGING PROGRAMS

tem which are known to be correct, there is no need to debug them. These can then be
executed independently, while other parts are debugged to find specific problems.

The next button is the ‘Return’ function (F7). This can be very useful if one forgets to use
the ‘Execute’ function. If one goes through the lines of a program step-by-step, using the F5
key to step into a working function module, which may contain many lines of code, it is
likely the case that it does not need to be debugged (because you know this function module
already exists). Pressing the F5 key endlessly to go through the lines of code here is
unnecessary when one wants to step out of this function module and access the parts which
require debugging. Using the ‘Return’ button, all of the code within a specific func- tion
can be executed, returning to the line of code which calls that function.

The fourth in the row is the ‘Continue’ option (F8). This allows one to continue the pro-
gram without going through step-by-step, line-by-line. When this button is pressed, the
program executes and the output screen is shown. This button can also be used to just
access a selected line of code, where the cursor is positioned. If one positions the cursor in a
line of code and presses continue, the blue arrow in the debugger will appear directly next
to that line. If you then press continue again, the program will be executed.

The next option in this row of the toolbar is ‘Display list’, accessible with CTRL+F12. This
takes you to the output screen as it currently stands within the debug session. Here, the code
has been executed to output the result of the first SELECT statement in the program:

ABAP Debugger

Cy (3 gF IF

0001000000 LBROWH STEPHEN
000k 2IONES Ay
00010C00003MICHAELS ANDREV
00010000004 ICHOLS BRENDAN
00010000005MILLS ALICE

28888

This function allows you to see the results of the reports whilst the program is in mid-flow.

The last option here is ‘Create watchpoint’ (SHIFT + F8). Watchpoints will be returned to
soon.

DEBUGGING PROGRAMS

Fields mode

The ‘Fields’ mode of the ABAP debugger allows the contents of fields to be checked and
modified as the program is debugged. This can be accessed either by double-clicking the
field name within the code itself, or entering it into the ‘Field names’ section below the
code:

SKIP 2.
SELECT * FROM zemployees. " Chain Statenents
WRITE: / zemployees-surname,
zemployees-foxrename,

zeuployees-dob,

ENDSELECT.
|\ IField names 1 - 4w |5y Field contents
zesployees-surnase MICHAELS v
r 3 o —
lzenployees-forename{l ANDREW @Q!
- -
SY-SUBRC ‘0 SY-TABIX |1 SY-DECNT '3

Note that, since here a table is involved, in the field name section the name of the table
must first be specified, followed by a -, then the name of the field. The field contents will be
filled in automatically. As you step through code line-by-line in the SELECT loop, the text
held in each field will change as each loop completes and moves onto the next record in the
table. This section allows for 8 fields to be monitored at any time. Fields 5 - 8 can be made
visible via the navigation buttons in the middle (to the right of the numbers 1 —4).

Often when debugging a program, you may want to manually change the contents of fields.
This can be achieved by replacing the text in the field contents area, then clicking the
‘Change field contents’ icon, marked with a pencil. Doing this can save a lot of time,
avoiding having to exit the debugging session multiple times to enter new values into fields
elsewhere:

DEBUGGING PROGRAMS

—

zemployees-surnans ;_J'o}msoia! Q _/,7

v .
zenployees-forename ALICE & -
o ctds @’ =Chge fid contents

System Variables

At the bottom of the debugger screen, are 3 fields, named ‘SY-SUBRC”’, ‘SY-TABIX’ and
‘SY- DBCNT’:

SY-SUBRC 0O SY-TABIX {1 SY-DECNT |5

N

Note that the value boxes here are greyed-out, meaning that they cannot be changed
manually. These are system fields, belonging to a table called SYST. This system table in-
cludes many system fields which are filled in at runtime. These system fields are filled in
automatically while the program is executed. Most statements within ABAP will cause
these system fields to be filled with O when executed successfully. It is important to re-
member that these fields are completely statement-dependent, meaning that they will
contain different values depending on which statement is executed. These system codes and
variables will be looked at in greater depth later.

Table Mode

The second mode along from the Fields button on the left of the screen is Table mode. Click
this button and the code remains, but the bottom section changes to include an ‘In- ternal
table’ entry, and a single row:

SELECT ™ FRON zeuployees. " Basic Select Loop with & LINE~BREAK
3 7 ‘ b=
Internd table | | Type Format E 2|
Vi change [Insert 0O Append @ Deete |

Internal tables have not yet been covered in depth, but, put simply; an internal table is a
table of records which is stored in memory while the program is running. Table mode al-
lows one to interrogate the records and fields of each record in an internal table. As with

DEBUGGING PROGRAMS

Fields mode, the internal table can either be double-clicked in the code, or manually en-
tered into the ‘Internal table’ box.

If one does this for “zemployees”, then, a new window appears, displaying the table
name, its individual fields and their contents:

Structured field L |

Length (in bytes) 114

N. Component name T. Ln... Contents Ej
1 MANDT C 3 000 a

EMPLOYEE N 8 10000005 %

3 SURNANE C 40 JOHNSOM
4 FORENAME C 40 ALICE
5 TITLE C 15 MRS
6 DOBE I D g 20000816

Things do look slightly different to normal here, as a table structure is being shown, rather
than an actual internal table. This results in the debugger showing the table structure as
above, listing the individual fields numbered 1 — 6 and their contents. When viewing an
internal table in this mode, one will see a number of records for each internal table with
their contents. These records can then be double-clicked to move to the above layout,
showing the individual fields for each record. This will be returned to later.

In this screen, the code remains, but the area in which it is displayed is very small. One can
continue to interrogate the code line-by-line as before still, but this may prove difficult. It is
usually simpler to check Table mode for the information required, and then click back to
Fields mode to continue the debug session.

DEBUGGING PROGRAMS

Breakpoints

Click the Breakpoint mode button in the ABAP debugger screen. This allows you to see a
list of the individual breakpoints which have been set. Double-clicking any breakpoint in
the Breakpoints table will remove that breakpoint from the list:

| EMENT START-OF-SELECTION

SELECT * FROM zemployees. " Basic Sslect Leoop with a LINE-EREAK
WRITE zemployees. " aftervthe first row is output.
= WRITE /.
Breakpoints
M. Breakpnt type in (absolute path) ce. [
@ 1 Point in prooram Z_EMPLOYEE LIST 01(20) -
2 3 =
3
4
5
6
7
8
Q
10
11
12 -
13 i
{«) <

This breakpoint table can be very useful, particularly when one is in a large program with
many breakpoints set. It allows one to review the breakpoint, and allows for the removal of
breakpoints which are no longer desired.

It is important to remember that breakpoints (and indeed Watchpoints) are only valid for the
length of the current debug session. When you exit your session, the breakpoints will be
deleted. However, an option does exist allowing you to save breakpoints (and, again,
Watchpoints) before closing a debug session, keeping them active for the next time the
program is to be debugged, saving the hassle of recreating them. This is done by entering

DEBUGGING PROGRAMS

the ‘Breakpoint” menu in the top toolbar and choosing ‘Save’. All of the breakpoints saved
will then remain until they are manually removed, or until the end of your SAP session.

,| _Breakpoint | Settings
Createfdelete
Activate/deactivate
Delete al
Deactivate all
Activate all
S
Bredkpont at

Create watchpoint

Development

Shift+F4

Shift+F2

Ctri+S

Shift+F2

If one is in the ABAP editor, it is possible to see an overview of all the dynamic break-
points set in the program by accessing the following menu option: Utilities ' Breakpoints
[] Display:

| Utilitizs ’ Environment Systemn Help

AR AR

Settings

Display ohject fist Ctrl+Shift+FS
Worklist

Display navigation window Ctri+Shift+F4
Update Navigation Index

Help on... Ctrl+F8
Breakpoints

Block/buffer

More utilities

Whiere-used list Ctrl+Shift+F3

\ersons

B & @m

bty Printer

Diglay
Setftelete Ctrl-Shift4F12
Delete

e s W

DEBUGGING PROGRAMS

[Braakpont Table

=

|, Z_EMPLOYEE LIST Ol Z_EMPLOYEE LIST Ol 000020 SELECT * FROM zemployees. “ Basic Je
Z_EMPLOYEE LIST 01 Z_EMPLOYEE LIST 0L 000027 WRITE zemployees. “ aftervthe first r
Z_EMPLOYEE LIST Ol Z_EMPLOYEE LIST O1 000026 SELECT *® FROM zeuwployees. * Basic Select Lo

“«) , 4

The options at the bottom of this breakpoint table allow one to delete selected break- points
without entering the debugger and breakpoints can be navigated to in the program itself
(within the ABAP editor) by double clicking them in this table.

Static Breakpoints

Static breakpoints were briefly alluded to earlier. These refer to a line of code written into a
program which forces the program to enter debug mode at the specific line chosen. To do
this, the statement BREAK-POINT is used. When the code is executed, the debug ses- sion
will start with the usual blue arrow cursor pointing at the location of the static break- point.

[UT Cavas e I aamas wemew M v o=
WRITE / zemployees.
ERDSELECT.

EREAK-POINT.

ULINE.

SELECT * FROM zemployees, " Basic Select Loop with a [

DEBUGGING PROGRAMS

ENDSELECT.
= BREAK-POINT.
ULINE.

SELECT * FROM zemployees. " Basic Select Loop with a LI

Once this statement is embedded in a program, it is active for all users. This is largely un-
desirable, as others running the program, who do not want to debug the code, would be
faced with the breakpoint set by an individual user. Be careful not to leave this statement
line in programs which will be transported to other systems.

Watchpoints

Click the Watchpoints button in the ABAP debugger. The program code will be visible
above the Watchpoints table in the lower half of the screen. Breakpoints have previously
been discussed, and can be very useful, but are not always the ideal tool to use to pause
code execution, interrogate the contents of individual fields and internal tables and ana- lyse
the program’s logic.

Imagine the program was processing a table containing 1000 records, and one wanted to
debug the logic only when a certain condition occurs. This condition is dependent upon the
data held in the records being processed. By using breakpoints, one would have to debug
each individual record, obviously taking a huge amount of time. Here, Watchpoints become
useful. Using these, one can tell the program to stop in the same manner that it would for a
breakpoint, but instead of stopping at a specific line of code, it would stop based on the
value in a field. In this example then, if this value occurred only in the 200™ line of the
table, a watchpoint would allow the first 199 records to be skippedover.

A watchpoint is created with the ‘Create watchpoint’ button, seen above the list of modes in
the Watchpoint mode screen, or with SHIFT + F8.

Once this is done, a dialogue box will appear, with the program name filled in automati-
cally. Here you need to enter the name of the field to be watched. In the
Z EMPLOYEE_LIST_01 example here, we will enter the surname field. The format is TA-
BLE_NAME-FIELD_NAME. Next, the relational operator is to be set. In this example, a
sur-

DEBUGGING PROGRAMS

name with the value “Mills” will be sought, so the operator here is an =. This can be se-
lected from a drop-down menu, where one can also view other potential relational opera-
tors. The bottom field, then, should be filled in with the value to be watched for.

Note that one does not have to use a specific value in the bottom field, but can get a
watchpoint to compare a field against another field within the program. To do this the
‘Comparison field” box should be checked, and the field name typed into the box rather
than a specific value.

Click the green tick to continue and create the watchpoint, and the entry will have been
added to the list at the bottom of the screen:

% [l | O watchpaint

G Create watchpoint (Shift+F8
| Table | Bree...w..m—]-,m‘uw.“g i) tack

[Create/Change Watchpoint

[Local watchpaint {only in specified program)
| Program 'Z_EMPLOYEE_LIST 01
Field name zemployees-surname
Relational Operator =
Comparison field {Comparison value if not selected)
= -7
Comp, fieldfvaue HILLS i)
%

DEBUGGING PROGRAMS

Watchpoints

N. L.. Program Field name 0. Bl comp.p | |

1 [| Z_EMPLOYEE_LIST 01 zemployees-surname = 7] MILLS |Zl

2 [T

F |}

4. | -

5 || -
q) i1)

Logical operator between watchpoints: ®)0R () AND
Current field contents of the last watchpoint reached,

Observe the boxes below the Watchpoints list here. They are currently empty, but when the
program is executed, it will pause once a value of ‘Mills’ is reached in the ‘surname’ field
and this will be included in the box.

The output before the program is executed looks like this:

My Employee List Report I
0O0E000000 1BROTN STEPHEN | 16800216
N0OLO00000ZTONES ANy MRS 18691118
D0010000003MICHAZLS ANDREW KR 19770101
00010000004NICHOLS BRENDAN MR 12561202
DO0LODDOOOSMILLS ALICE MRS 20000816
00010000001BROWH STEPEEN MR 12800216
00010000002J0NES ANY HRS 19691118
00010000003MICHAZLS ANDREW MR 19770101
000L0000004NICHOLS BRENDAN MR 18581202
UUUIDUUDU%M]LL:‘I) ALICE MRS 20000816

Note that the surname Mills appears in the fifth row down. When the program is executed
with the ‘Mills’ watchpoint set, the first four records will be written to the screen before
pausing at the fifth, when Mills is displayed.

0001000000 1BROWH STEPEEN HR 198002186
00010000002J0NES AMY MRS 15691118
000L0000003MICHAELS ANDREW MR 15770161
0O0LO000004ANICHOLS BRENDAN HR 18581202

You will see that the blue arrow cursor has paused at the SELECT loop in the code.

DEBUGGING PROGRAMS

= SBE.SCT * FROM zemployees. ' Basic Select Loop with a LINE-EREAK
WRITE zemployees. “ afrervthe first row 1s output.
WRITE /.
ENDSELECT.

Enter zemployees-surname in the Fields mode of the debugger to view the contents of the
field. You will see the field contains “MILLS”. Also in the Watchpoints mode, the bottom
field will now be filled:

T [Field names 1 - 4_'_'@ ’ Field contents
aal_ exployees-surnane _'?}IILLSI Ql/|
- —_——

Current field contents of the last watchpoint reached;
Ve : P 3 - .
.Z_EMPLOYEE_LIS‘I‘_-Lzemployees-surname 1 HII]j..S

Ending a Debug Session

There are two ways to stop debugging a program. The first is to use the F8 key to run the
program all the way through to the end. Keep in mind though, that if any break or Watch-
points are set, the execution will likely pause and have to be started again, perhaps multi-
ple times. Also this method depends entirely upon the program executing successfully. If
any runtime errors are caused, the debug session will terminate and return you to the SAP
menu screen.

The alternative way of stopping the debugger is to enter the ‘Debugging’ menu and choose
‘Restart’. This way, no more of the program will be executed, and you can return to the

ABAP Editor’s 1nitial screen:

DEBUGGING PROGRAMS

Igebugging _f Edit Gotc Breaky

SESSSSTY TTW BTy eanmmm——— P ST e

Single step FS
Execute F6
Return F7
Continue (to Cursor) F3
Execute PAI/PBO module
Goto Statement

Database

Debugging off

B3
E) Shift+F3

ENHANCING DATABASE TABLES

Working with Database Tables

Making a Copy of a Table

This chapter will look at ways in which one can change the transparent tables created ear-
lier. It is important to know how to do this, and the implications of adding and taking away
fields for the underlying data in a database table.

Let’s take a look at the ZEMPLOYEES table created in Chapter 2. In the SAP GUI, key in
transaction code SE11 to access the ABAP dictionary, then display the table:

Transp. table ZEMPLOYEES Active
Short text [Employees

. Attributes " Delivery and Maintenance < Fields - Entry help/check © Currency/Quantity Fields

IEJ[1| = ;“—‘. [E ["i F,Tlgll [gl Srch help | Bltn type

| Field K. | 1. |Dataelement DTyp Len.. Dec.. | Shorttext
Zmum? 3 7 MARDT CLET 3 0Chent
ENPLOYEE [§ J| ZEENUK HUMC 8 0Employee Data Element,
SURNAME ZSURNAME CHAR 40 0Surname Data Eement
FORENANE I ZFORENAME CHAR 40 DFarename Data Element
TITLE [| (1 ZTITLE CHAR 15 0Title Data Element
DCB | zpoB DATS 8 ODate of Birth Data Element

It is important to realise that whenever one wants to change a database table, there is a risk
of losing data, especially where key fields in the table are being affected. The database
system itself will try to determine whether adjustments can be made by deleting and cre-
ating new items which change the underlying database catalogue, or whether what has
already defined has to be re-implemented.

Quite often, when working with large tables, one has to manage the manipulation of the
data oneself, so as to be sure that data is not lost. Deleting fields is quite a simple task, the
table structure and its contents can add certain complications. Before starting any data- base
change tasks, it is important to mitigate against as many risks as possible, and start

ENHANCING DATABASE TABLES

by using a copy of the database table, allowing one to test out any changes one may want to
make, without affecting the initial table and its underlying data.

When you copy a database table, it is only the structure itself which is copied, meaning only
its properties - fields and so on, not the actual data.

Step back to the initial SE11 screen. With ZEMPLOYEES in the Database table field, click
the Copy button, then give the new table of ZEMPLOYEES2. The ‘Create Object
Directory Entry’ box will appear and as before, select ‘Local Object’:

o Database table JD‘
VWView

[= Copy Tabla x
| From

Table | ZEMPLOYEES

to

-~ =
Table | ZEMPLOYEESZ | =
23

A copy of the table has now been created. Choose display at the SE11 screen and the copy
will appear. The table’s status will read as ‘New’. It must be activated, so click the
‘Change’ button (the Pencil icon in the toolbar), and then Activate:

= Poeg o1 & 8 H BB Technicasettings Indexes...

Transp. table ZEMPLOYEES2 New
Short text Employees

Note that all of the fields in the table, since they have been copied, are already active. This
is why it is only the table itself which has to be activated here. If you try to look at the ta-

ENHANCING DATABASE TABLES

ble, you will find there are no contents, because only the structure was copied, not the
underlying data. To create records, from the ‘Utilities’ menu, select ‘Table Contents’ and
then ‘Create Entries’ to display the screen where the records for the table can be created as
before.

thllf;eﬂ Extras Emvironment System Help

Settngs.. 00 BN @B
Display object list Ctri+Shift+FS
i Worklist »
s Display navigation window Ctri+Shift+F4 ‘
i Bttings Indexes... Append stru
Activation oo
4 Database utility
| Database object v |
Ruritime Object »
¢ Gaphic Ctri4Shift+F11 | Currency/Quantity Felds |
| Table maintenance generator
Table contents » Display Ctr+Shift+F 10
< Where-used st Ctri+Shift+F3 Create ﬁtfi&s
s Varsions » | OChent
AT h il -] O Ermmlacimm Piub s Elmenmnt

Insert some records, click the Contents button, and then view the new table:

Table ZEMPLOYEESZ2 Insert

Reset

I

Chient
Ermployee Number |10000001]

Surname 'Smith
Forename 'Paul
Title My

Date of Birth Lm.ob. 20123

ENHANCING DATABASE TABLES

Data Browser: Table ZEMPLOYEES2 Select Entries 32
D@ &TFERESH

B Lise widen 0250

Client|Employ=e Number| Jurname Forename Ticle Dste of Bicth
& 10000001 SHITH PAUL MR 17.01.1880
oo 10000002 BROWN AN DR 15.07.1566
0o 10000003 WILLIANS SARAH MRS 11.06.1971

Add New Fields

Next, a new field will be added. This will be a non-key field and will be called INITIALS.

Create a new Data element for this named ZINITIALS using forward navigation. For the
data element, set the short text to ‘Initials’ and set the domain to CHARO3 (a character
string of length 3). In the Field label boxes type ‘Initials’, then activate the Data element.
The table should now have a new field like this:

vy Zouy DATS u uLate or Birtn Data kiement
;
INITIALS ZINITIALS CHAR I 3 Og.n»ttalsl

Create another 3 more new fields and configure them as follows:

Field Name ‘GENDER’
o Set the Data element to ‘ZGENDER’. Configure the data element as follows:
= Short text: ‘Gender’
= Domain: ‘CHARO1’
= Field labels set to ‘Gender’
e SALARY
o Set the Data element to ZSALARY
= Short text: ‘Salary’
= Domain: ‘CURRY’ (This has a length of 9, with 2 decimal places)
» Field labels set to ‘Salary’.

One thing to note about the Salary field is that, because it is a currency, another field for
this currency must be created and attached to ZSALARY to indicate what currency the sal-
ary is in. If you try to activate the table without doing this, an error message will appear
asking for a reference field to specify the currency.

ENHANCING DATABASE TABLES

Create a new field called ECURRENCY. Currency fields should already exist in the
system, so the Data element here will be a pre-existing one named CURCY. Type this,
press enter and the remaining fields should fill in automatically, leaving the new section of
the table looking like this:

vuo LUUD UARID o Uate Or -iren vata siement
INITIALS : ZINITIALS CHAR 3 01Initials

GENDER ZGENDER CHAR 1 0Gander

‘SALARY || [] [ZSALARY CURR 9 2Salary

[ECURRENCY x CURCY CUKY i 5} 0Currency Key

Next, the system must be told that the Salary field is referencing the Currency field. Above
the table will be able to see a tab labelled ‘Currency/Quantity Fields’. Click this and the
table will be shown with two boxes to be filled in for the Salary field, since it has already
been specified that the domain for this field is Currency. In the ‘Reference table’ column
enter the name of the table, ‘ZEMPLOYEES2’ and in the ‘Reference field’ column, the
name of the new Currency Key, ‘ECURRENCY”. Now the table can be activated error free.

Attributes | Delivery and Maintenance | Fields Entry help/check /' Currency/Quantity Fields |

%ﬁ;—z_ %] search help) 1/10

| Feld Data element DTyp | Referencetsble | Ref. field Short text

| mANDT MANDT CLNT Chent

| EMPLOYEE ZEENUM NUMC Employee Data Element

| SURNAME ZSURNANE CHAR Surname Data Element

| FORENAME ZFORENANE CHAR Forename Data Element
TITLE ZTITLE CHAR Title Data Element

| DoB ZDOB DATS Date of Birth Data Element

| INITIALS ZINITIALS CHAR Iritials

| GEMDER ZGENDER CHAR Gender

} :s.umw :zsumr CURR ZEMPLOYEESZ ECURRENCY Salary

| ECURRENCY CURCY CUKY Currency Key

Foreign Keys

As shown earlier enter a new record. You will see that the currency key does not offer any
kind of drop-down menu, here for this example, type GBP, indicating Great British Pounds:

ENHANCING DATABASE TABLES

Client

Employee Number 10000004
Surname ROSE
Forename |ANN

Title nIS3

Date of Birth 04.01.1885
Initials c

Gerder ¥

Salary .12345.
Currency kay r'GBP |

Save the record, and then return to the design of the table, where we can now add some
error-checking to ensure that valid entries are made in the Currency key field.

To enable error-checking on the currency key field, we need to make use of a Foreign Key.
These are used to ensure that only valid values can be entered into a field. Use forward
navigation on the CURCY data element. Look at the Data type tab and you will see that the
data element refers to a standard SAP domain, WAERS:

Data element CURCY | Active
Short text ‘Currency Key

_ Attributes ~ Data Typs | Further Characteristics ~ Feld label

(= -
@ Damai [k L _’lj.rrencv key
Data Type CUKY Currency key, referenced by CURR ..
Length 5 Decimal Places (E]

Double-click the WAERS domain to use forward navigation again. Look at the ‘Value
range’ tab in this window, a ‘Value table’ box is visible at the bottom, labelled TCURC:

Vake table TeurRe |

ENHANCING DATABASE TABLES

A Value table can be used to determine the entries that can be made in the field based on
this domain. Double-click TCURC to again use forward navigation and this value table will
be displayed.

Transp. table FTCURC 1 Active
Short text 'qurqr)_cy_ Codes

Attributes | Delivery and Maintenance Fields | Entry helpjcheck | CurrencyjQuantity Fields

VRE EE BEER] #] smre [senue
 Feld Ko L. Dataslement DTy Len.. Dec. | Short text
| M Jl?- (V] HANDT CLNT 3 0Chent
WAERS [¥] [WAER3 CURC CUKY 5 OCurrency Key
| 1socp (]|) Isocp CHAR 3 0150 curency code
~ ALTWR [[T} ALTWR CHAR 3 0 <emative key for cumencies
| GDATU [} [} DATUM_CURC DATS 8 0Date until which the currency is vaid
_ XPRIMARY [| [[] XPRIMARY CHAR 1 OPrimary SAP Currency Code for ISO Cade

Use the data browser to look at the data in this table. If you scroll down, the GBP value
from before can be found, among a number of others. This table can be used to ensure that,
in future, only entries found in this table can be entered into our new table ZEM-
PLOYEES2

Table: TCUREC
Displayed Eields: & of 8§ Fixed coluuns:

(SN
-

W

Client|Currency |10 code|Alternative key| Valid until|Primary

_|ooo |EsP ESP 724 00.00.0000
_|oog ETE ETE 230 00.00.0000
_|so0 EUR EUR 978 00.00.0000
_|ooo FIN FIN 246 00, 00. 0000
_|ooo FID FID 242 00. 00,0000
_|000 FK?P FKP 238 00.00.0000
_‘_Jooo FRF FRF 250 00.00. 0000
GBP GBP 826 00.00.0000

GEL GEL 981 00.00, 0000

- GHC GHC 288 00.00,0000
_|ooe GIP GIP 292 00.00.0000
_|oo0 GHMD GMD 270 00.00.0000
_|ooo |GuF GHF 324 00.00.0000
000 |GRD GRD 300 00.00.0000
000 | GTOQ GTQ 320 00.00.0000

ooo Gre GWP 624 00.00.0000

ENHANCING DATABASE TABLES

Return to the ‘Maintain table’ screen for ZEMPLOYEES2, highlight the ECURRENCY field,

and click the Foreign key button visible in the toolbar above: @

Choose ‘Yes’ in the box which appears and a ‘Create Foreign Key’ window will emerge.
Type the short text ‘Check Currency Field’. A small table is visible, detailing the two key
fields from the TCURC table and the ZEMPLOYEES? table. The option is available to
ensure that the foreign key matches both fields, so that when the user is allowed to select an
en- try, the records returned will only be valid for the Client which is being worked in.

Here though, the Client is not to be chosen as part of the key, so select the Check-box
‘Generic’ for the top row, which refers to the Client, and remove the text from the two
boxes on this row where this is possible. Then click the ‘Copy’ button. The foreign key will
be created:

[E Create Foreign Key ZEMPLOYEES2-ECURRENCY

Short text Check Currency Field
Check table TCURC » Ganerate proposal
Check ta.,, ChkTabFld Forkey t... Foreion key field Generic Constant
TCURC MANDT v
TCURC WAERS ZEMPLOYEE .. ECURRENCY)
4« '
Screen check
v Chack required Error message Msgho Abrea
Sernantic attributes
Foreign key field type * Not specified
Non-key-fields{candidates

Key fields{candidates
“Key fields of a text table .
Cardlinality : IE]

igeny [+ [~

ENHANCING DATABASE TABLES

Activate the table, and then browse the data. Now, select the currency key and either press
the F4 key or select the drop-down box that appears, displaying all valid entries for this
field. If you were in record change mode you will then be able to select a value from the
table and see it update your zemployees 2 record. Try it out and select USD (US Dol- lar).

[© Currency Key (1) 185 Entries found

-
CACIEE e =

Cr...” Long text

TZS Tanzarian Shiling B
UsH Ukrame Hryvria A

UGK rUgardm Shilling
UsSD LUnIted Statihoddar X
USDN (Internal) U States Dollar (5 Dec.)
Uyl Uruguayan Peso (new)

UZS Uzbekistan Som

YEB Venezuelan Bolivar

VHD Vietnamese Dong

VUY Vanuatu Vatu

WST Sampan Tala

XAF Gabon CFA Franc BEAC

XCD East Carribean Dollar

XDS St Christopher Dollar

XEU European Currency Unit (E.C.U.)

XOF Benin CFA Franc BCEAO

XPF CFP Franc

YER Yemehi Ryal

YUM New Yugoslavian Dinar a
ZAR South African Rand -

185 Entries found

ENHANCING DATABASE TABLES

Table ZEMPLOYEES2 Change

Check table..,
Ciient 000
Employee Number 10000004
1 2
Surname LM !
Forename ANT
Title MISS
Date of Birth 04.01.1985
Initials C
Gender F
Salary 12,345.00
Currancy key UsD

Append Structures

Having looked at foreign keys, the next thing to look at are Append structures. These can be
used to add additional fields. This is the preferred method for maintaining SAP deliv- ered
tables and quite often for customer-specific tables. If one does not use Append struc- tures,
problems can arise if, for example, a new version of SAP is used which does not cor-
respond with aspects of the tables already created, resulting in serious errors.

Append structures give a safe way to enhance tables. When these are used, the initial ta- ble
remains unchanged, removing any risk of changes being overwritten later if a different
version of SAP is used. Quite often, a table may have multiple Append structures applied to
it, because different development needs have arisen as time has gone by and people have
wanted to add further fields to the standard SAP tables.

In the SE11 Maintain Table screen, go to the ‘Append structure’ button on the right of the
top toolbar:

B o) & S 8201 B8 M rechnicasettings Indexss.. | Appendstructure..,

[ZEMPLOYEES2 Active Append structure.., (F3)

ENHANCING DATABASE TABLES

Click this, and the system will suggest a name, ZAZEMPLOYEES2 (note that this, again,
must begin with a Z). Accept this and you will be presented with what looks like an empty
table structure. Enter the Short text “Extra Fields For Employees”, and then move down to
the table.

Note that the first field now is called ‘Component’. This is where new fields are created.
However, it may be useful to differentiate between fields created in the main table, and the
new components created here in the Append structure. Since both must comply with the
customer name rules, where Z was used in the main table, here use ZZ.

For the first component, a ‘Department’ field will be created. Type in the ‘Component’ box
‘ZZDEPT’ and the same again in ‘Component type’. For this Component type, use forward
navigation in the same way that it was used for the Data element before, double-clicking to
create. Save the Append structure as a local object when prompted, and then select to create
a Data element when prompted subsequently.

The familiar data element screen will now appear. Type ‘Department’ for the short text, use
CHARI10 for the domain and ‘Department’ again for the Field labels, then activate the data
element. Step back to the Append structure screen, then Activate:

& DU g o) £ 580 H Heachydslsy Aopend stuctues,,

Append structure ZAZEMPLOYEES2 Active
Short text \Extra Fields For Errployees

- Attributes /" Comporents ‘}7 Entry helpfcheck |~ Currency/guantity fields

QIE@ E[@ lj@'—ﬁla-_lé—] !;?j Srch help H Bullt-in type Show appending objec |
i rComponent A R... Component type BTyp Len... | Dec.... Short text
JzzoErT] | 2ZDEPT CHAR 10 0Department

4

Return to the main table screen, where a new row displaying the Append structure will have
been created. To then access this structure, simply double-click the row. In Change mode
only the ‘. APPEND’ line will be visible by default, but in Display mode the fields cre- ated
within this will appear below:

ENHANCING DATABASE TABLES

SALARY [7 [1 ZSALARY CURR 9 2Salary
ECURRERCY | CURCY CUKY 5 O Currency Key
. APFEND [ZAZEMWPLOYEESZ 0 0Extta Felds For Employees

This is a very useful way to add new fields to a table without affecting the structure of the
table itself. If one then browses the data as normal, a new column will have been called
‘Department’. Data can then be entered into this field just like it can for any other:

Salary Currency key|Department
0.00
0.00
0.00
12,345.00 |USD A

Include Structures

Include structures are similar to Append structures, with the main difference being that they
are re-usable objects and can be linked to many other tables, ABAP programs, dia- logue
programs and structures. It is important to keep in mind that Include structures must be flat
structures, meaning that they cannot hold any additional structure within them, and that the
maximum length of the fields within an include structure is 16 charac- ters.

There is no Include structure button in the way that there is an Append structure button. To
create one, first ensure Change mode is selected. Where the cursor is placed is impor- tant
here, as wherever the cursor is when the Include structure is created, it will be cre- ated one
row above. If you want the Include structure to be part of the table key, it must appear at the
top, because all table fields used as a table key need to be grouped together at the top. In
this instance though, it will just be inserted above the Append structure. Place the cursor on
the . APPEND’ row, select the ‘Edit” menu, then ‘Include’ and ‘Insert’.

| Edit / Goto Utilities Extras Emvironment System Helj
Buit-in type Ctrl4+Fe | QQ DHB &5t
Transfer fields ‘

! Attribute from entity type i
Inciude » Inrert L

Cancel F12 Copy Components [

———

- .}

ENHANCING DATABASE TABLES

In the window that appears, enter ‘ZEMPL’ in the ‘Structure’ field and click the continue
button. A warning box will appear stating that this is not yet active, dismiss this, and the
Include structure should now appear in the table:

" | Et-ln type

Structure ZENPL
I =
Group Ll) ec. .. Short
; 0Chent
Narme suffix
0Employ
lﬁhx: 0Surnam
ﬂl:nvnn's;
— Continue {Enter)
ZTITLE CHAR LY OO
I SALARY 1| [] ZSALARY CURR 9 2Salary
: ECURRENCY (1| [] CureY CURY 5 oCurrency Key
| m : ZENPL (] 0
| . APPEND [1 [ZAZEMPLOYEESZ 0 0Extra Felds For Employees
|

To add a field to this, use forward navigation as before, double-clicking where . INCLUDE
ZEMPL’ appears, save and choose ‘Yes’ to create the structure. The screen which then ap-
pears is very similar to the Append structure screen.

Type the Short text “Employee Include” and begin to create a field (the boxes are, like in
the Append structure, labelled ‘Component’), this time for location, called ZZLOCAT, and
use ZLOCAT for the ‘Component type’. Use forward navigation again to create this Data
element with Short text ‘Location’, the domain CHAR10 and ‘Location’ again for the Field
labels, then Activate this as usual. Activate the Include structure once the field has been
created and return to the main table to see the Include structure located just where we
wanted it, above the Append structure:

w5 e “- ———— - ¥

ECURRENCY | CURCY CUKY 5 OCurrency Key
. INCLUDE ZEMPL 0 0Employee Incude
. APPEND | ZAZEMPLOYEES2Z 0 0Extra Felds For Employees

Activate the table now, and view the contents. The Location column should now be visi-
ble, and these records can now be edited and created like any other:

Chent
Employee Number

Surnams
Forename
Title

Date of Birth
Initials
Gender
Salary
Currency key
Location
Department

ENHANCING DATABASE TABLES

r key{Location

} {Jepa-rment,

s

000!
10000005

1245, 200
'HUF
'LONDON

\IT

<

If one switches to Display mode, the field created in the Include structure can be seen in the
context of the main table, albeit in a different colour:

ENHANCING DATABASE TABLES

- attrioutes | Delivery and Maintenance /‘Fields | Entry helpjcheck | Currency/Quantity Felds |

YRE BE FEEE] F smne | [e

Fiald Ko L., | Dataslement DTyp Len.. |Dec. Short text
7 EURNM{E i [[T] ZSURNAME CHAR 40 0Surname Data Berment
FOREHANE [71 [] ZFORENAME CHAR 40 OFarename Data Element
TITLE I ZTITLE CHAR 15 0Title Data Element
DOB ‘ 1 ZD0B DATS 8 @Date of Birth Data Element
INITIALS [| [ZINITIALS CHAR 3 0lnitials
| GENDER [[ZGENDER CHAR 1 0Gender
'SALARY | [zsALary CURR 9 25alary
ECURRERCY (| O] CurcY CUKY 5 0Currency Key
| IHCLUDE 0 7 zEmeL 0 0Employee Include
JlzzrocaT 7] | [ZLOCAT CHAR 10 oLacation
. APPEND (71| [} ZAZEMPLOYEES2 0 0Extra Felds For Employees
ZZDEPT 7 | [) 2zDEFT CHAR 10 0Department

In Change mode, these fields can be seen by selecting the . INCLUDE’ row and clicking
the ‘Expand include’ icon (the same works for the Append structure also):

ok BE [_Fa:[_] [srchnep | [Buitintype |

 Feld K. | L. |Expand include 'DTyp Len.. Dec.. Sharttext
'SURNAME [} [T1 ZSURNAME CHAR 40 0Surname Data Blement
| FORENAME | [‘zForEmANE CHAR a0 0Forename Data Element
| TrTie (1| O zrme CHAR 15 0 Title Data Element
DOB C ZD0B DATS 8 0Date of Birth Data Element
INITIALS (]| [ZINITIALS CHAR 3 0 Initials
 (GENDER 1| [ZGENDER CHAR 1 0Gender
'SALARY 1 [] zsALARY CURR 9 2Salary
ECURRENCY (7] [} curcY CUKY 5 0Currency Key
: (1| [} ZEMPL 0 0Employes Include
2ZLOCAT (]| [ZzLocar CHAR 10 aLocation
Key Fields

If you want to add or remove fields which are designated key fields, then it is important to
take into consideration what will be going on in the database itself. All of the new ele-
ments which have been created for this table have their features applied by the system to the
ABAP dictionary, not the underlying database. When any key field is adjusted, the sys- tem
has to apply changes to the underlying database itself. If there is data in the table, and key
fields are changed, this can have unintended consequences.

ENHANCING DATABASE TABLES

If you introduce a new key field, this will probably not have a large effect. However, if one
makes a key field no longer a key field, this will require consideration, because if there is a
lot of data in the underlying database, by taking away a key field, duplicate records could
be introduced. Corrupt data or records being deleted from the table can also happen here.

Let’s see how we can add, remove and alter fields without these hazards.

Open the full ZEMPLOYEES?2 table in the ABAP Dictionary ‘Maintain Table’ screen. Let’s
change the ‘Surname’ field by turning it into a key field.

Check the two boxes (key and Index) by ‘SURNAME’ and Activate the table. When you
now view the table contents, the surname column will be a darker colour, indicating that it
is now a key field. Beyond this though, it appears very little has changed:

XomER = [FEEa] L
Field

y Ko 1. | Data element
NANDT (Key (V! EANDT
EMPLOYEE vl [V ZEENUN
3] 5
SURNAME 4 JJ ZSURNAME
FOREHAME Wi 11 i ZFORENAME
Displayed fields: 12 of 12 Fixed coluuns: E:lest width 0250
Client|Employee Number| Surnamwe Forenaue
_|000 10000001 SMITH PAUL
_|aoo 10000002 EROWN IAN
_|00o 10000003 BWILLIAMS SARAH
_|00o 10000004 ROSE ANN
000 10000005 GREEN ANDREY

Now, uncheck the boxes on the ‘Maintain Table’ screen, to make it no longer a key field.
When you try to activate the table an error message appears, refusing to activate the ta- ble
as data may be lost with the removal of a key field:

&) TABL ZEMPLOYEESZ was not activated
Check table ZEMPLOYEES2 (BCUSER/17.07.12/15:20}
01ld key field SURNAME is now non-key field
4} srructure change at field level (convert table ZEMPLOYEESZ)
Check on table ZEMPLOYEESZ resulted in errors

D99

ENHANCING DATABASE TABLES

To activate the table against what seem to be the wishes of the system (after all, one knows
the data will be fine as the surname field has not been operating as a key field at any point
previously), a different transaction must be used.

From the ‘Utilities’ menu, select ‘Database utility’, or use transaction code SE14. A new
screen will appear:

ABAP Dictionary: Utility for Database Tables

q} Indexes,,. Storage pararmeters Check.., Object log 1 |

I~ 1)

Fame \ZEMPLOYEES2 Transparent table

Short text Employees

Last changed BCUSER 17.07.2012

Status Revisged Saved Q

Exists in the database

Execute database operation
Processing type
(e Drect
' Background
__Enter for mass processing

| Delete database table \

I Activate and adjust database (e Save data (_Delete data

This transaction lets us automatically adjust the data held in our table when making ad-
justments to the database table structure. Environments where tables are being worked on
may contain a huge number of records. With this in mind, this transaction can be exe- cuted
as a background process. However, for our example the ‘Direct’ option is the option

ENHANCING DATABASE TABLES

to choose because we know we have very few records in our database table. Select this, and
then click ‘Activate and adjust database’ with ‘Save data’ radio button selected. Say ‘Yes’
when the box asks “Request: ‘Adjust’” and notice the status bar should indicate the success
of this execution. Then, step back to the ‘Maintain Table’ screen and you will see the table
should be Active with the surname field no longer key.

To insert a new field as part of the table key, you must be able to adjust the location of
fields on the screen. For example, if you wanted to create a new field above the surname
field, you would highlight the row and then click the ‘Insert row’ icon in the toolbar. This
toolbar also includes ‘Cut’, ‘Copy’ and ‘Paste’ options, allowing for rows to be moved up
and down if there is a need to do this:

MomEE —[eEFEa] LF[sahee ||
| Feld ' I

K., Data element DTyp Len
AT Insert row 7 (¥ MAWDT S
EMPLOYEE V) | [v] ZEENUX HUME
{SURNANE 3 | | ZSURNAME CHAR

Deleting Fields

While infrequent, occasionally there may be a need to remove a field from a table. When
doing this, it is important to take special care, as data can be lost in the process. Certainly in
the case of key fields.

If, for example, the Currency key field was removed from our table, the foreign key rela-
tionship to the TCURC table would be removed. As the SALARY field has to have a
related Currency Key this would cause the table to no longer continue working, and likely
make the ZEMPLOYEES?2 table become inactive.

When deleting fields it is important to ask oneself whether the data being held in the table is
being used elsewhere, and whether its deletion will have further consequences. If you do try
to delete fields which are being used elsewhere, the SAP system should try to pre- vent this,
or at least issue a stern warning. This is not necessarily to be relied upon though, so always
ensure to check manually what the effects of deletion are likely to be. Also, if

you do delete fields, the table will have to be adjusted via the SE14 transaction to be acti-

vated again.

Create a new field, above . INCLUDE’, named ‘ZAWESOME’. Use a previously created Data

ENHANCING DATABASE TABLES

element, here ZTITLE just to save time, and activate the table:

ECURRENCY
ZAWESOHEE
- THCLIIDE

Create a new record in the table. The data here is not important and will be deleted, so the

{ CURCY
ZTITLE
I ZENPL

content can be anything:

Client
Employae Nurmber

Surmname
Forename
Title

Date of Brth
Tnitials
Gender
Salary
Currency key
Title
Location
Department

(TITLE)

(ZAWESOME)

]

e -

CUKY 5
CHAR 15
n

10000010

que
que
que
04.01.13%82

9

.4
1234
GBP

avesone

LOEDON

Currency key

Ticle

Location

ush
HUF
GEP

AVESOME

PARIS
LONDON
LONDON

OCurrency Key
0Title Data Element
NEmnlmvee Tnch ids

ENHANCING DATABASE TABLES

Now, to delete the field, highlight it in the ‘Maintain Table’ screen, and click the ‘Remove
row’ icon, in the toolbar next to ‘Insert row’. The row will disappear, but when you try to
activate the table, an error message will appear:

&) TABL ZEMPLOYEESZ was not activated
Check vable ZEMPLOYEESZ (BCUSER/18.07.12/10:25)
Field ZAVESOME was deleted
ALTER TAELE iz not possible
@ | 4} 3tructure change av field level (convert table ZEMPLOYEES2)
® Check on table ZEMPLOYEESZ resulted in errors

Transaction SE14 must again be used to adjust the table so the change can be applied. Fol-
low the same steps as in the previous section to perform this task. Once this is complete,
view the table again. The column has disappeared, and the data which was contained within
it lost:

Currency key|Location

Ush PARIS
HUF LONDON
GBP LONDON

™~

To see what happens when a key field is deleted, return to the ABAP Dictionary initial
screen and make a copy of ZEMPLOYEES2, called, unsurprisingly, ZEMPLOYEESS.
Doing this will allow the ZEMPLOYEES?2 table to not be damaged in this risky procedure.
Activate the new table (which, don’t forget, will be empty of records). As before, again
make the Sur- name field a key field. Now create some records for this table:

-

Client|Employee Buwber| Surname Forename Ticle
%000 10000001 SMITH PAUL MR
000 10000001 SMITHZ PAUL MR
- ooo 10000002 ANDREWS PAUL MR
aoo 10000002 ANDREWS -2 PAUL MR

ENHANCING DATABASE TABLES

To save time creating new records, the same data was replicated here, with only slight
changes to the key fields. Remember that it is only one key field per entry which must be
unique for that particularly record to be unique itself.

Now, the surname field will be deleted, and the effects of deleting this key field observed.
By removing this key field, the only unique data which will be held for each record will be
the Employee Number and Client. Since SMITH and SMITH2, and ANDREWS and AN-
DREWS-2 have the same Employee Number and Client, these will no longer hold unique
key field data, leaving duplicate records, which the system will not allow.

Remove the Surname field; try to activate the table, and error messages will appear. Go
through SE14 to adjust the table for activation. When you now view the table, the Sur-
name field is gone, and two records have been lost, leaving only one of the two records for
each of the two Employee Numbers used:

Client|Employee Nuwber| Forename Ticle Date
000 10000001 PAUL HR 01.0]
000 10000002 PAUL MR 01.0]

Deleting Tables

One will not often have to delete an entire database table, for largely the same reasons as
were outlined above for fields. If this does have to be done it is important to remember that
one’s own customer-specific tables are the only ones which can be deleted, SAP de- livered
tables cannot be deleted. Because ZEMPLOYEES3 has only just been created, and nothing
else depends on this table, it can be deleted without consequences.

To check whether a table can be deleted without causing unintended consequences else-
where in the system, return to the ABAP Dictionary’s initial screen. Because the original
ZEMPLOYEES table was used in the programs which have been created, use this as a test.

Insert this into the Database table field on the screen and then click the “Where-used list’
icon from the toolbar.

ENHANCING DATABASE TABLES

ABAP Dictionary: Initial Screen
qo l=H OO0

Where-used list (Ctri+Shift+F3)

5 1
« Database table ZEMPLGYEEs _,[j
YView

Once this is clicked, a dialogue box will appear offering a list of check-boxes. This will
then search all of the different areas of the SAP system selected for references to the table
ZEMPLOYEES. To execute this search click the Continue icon. Choose ‘Yes’ to the pop-
up box, and wait while the system compiles the search results, which here show that this ta-
ble is being used currently by 2 programs:

Database table ZEMPLOYEES (2 Hits)
e g @ E10 SAFHE EETEEBEB T combnedist

Program Short description
[}z EMPLOYEE_LIST 01 My Euployee List Report
Z RELEASE 4 Release 4

Having done this, one now knows that if the ZEMPLOYEES table were to be deleted, these
programs would become inactive. By double-clicking these entries, one can see the code in
the program where ZEMPLOYEES is referred to, and if you double-click on any line of
the program, it will open the program at that line of code in the ABAP Editor. The Where-
used button is a very useful tool, which can be invaluable not just when deleting pro-
grams, but in many other scenarios.

If you were to try to delete ZEMPLOYEES, the system would not allow this course of
action and would prevent it from happening until all the programs that are dependent upon
it were either edited to remove references or deleted altogether themselves.

Since nothing depends upon ZEMPLOYEESS3, this can be deleted. With the correct name in
the ‘Database table’ field, click the ‘Delete’ button in the toolbar:

ENHANCING DATABASE TABLES

ABAP Dictionary: Initial Screen
an + o P H %EU

* Database table ZEMPLOYEESZ ()]
Wiew

Data type
() Type Goup ZEMPL

Domain
1Search help
'Lock object

Gy Disslay | [change | |O Create |

A box appears stating that the data contained in the table would also be deleted. If you click
the green tick icon this time, the system would return to the main screen with the table still
intact. If the middle button, illustrated with the trashcan icon is clicked, this will proceed
with the deletion. Once this is done, the status bar should confirm the action. If you try to
display the table now, it does not exist. Once the deletion is completed, it can- not be
undone:

(S Delete Table ZEMPLOYEESS

@[Table still contains data.
Data will akso be deleted during deletion,

mia %),
elete (Shift+F2)

ZEMPLOYEES3 was deleted

WORKING WITH OTHER DATA TYPES

Working with Other Data Types

Date and Time Fields

This section will look at some other data types which can be used in ABAP. So far, numeric
fields have been used for performing calculations, and character strings have been exam-
ined along with the ways these can be manipulated with ABAP statements. Now, date and

time fields will be looked at.

Enter the ABAP editor (with transaction SE38) and make a copy of the previous program,
alter the comment sections, and remove most of the code:

ABAP Editor: Initial Screen
gt BB O OB Ooctugme Owithvaiant [Rvariats

ke

Program (2 CHARACTER_STRINGS |10 Create

[Copy Program Z_CHERBCTER _STRINGS

Solce program Z_CHARACTER_STRINGS
=181 IF
Target program Lz_mn_oan_rnss|

&g Display | & Chanige

WORKING WITH OTHER DATA TYPES

ABAP Editor: Change Report Z_OTHER_DATA_TYPES
= Yo guy) @ S BSCOIH @ patten Pretty Printer

Report 'Z._O’I'EEII‘?_I&ATA_'I‘?"PES' Inacty.

FEHE @ i 2E

N e e e e e *
*¢ Report Z_OTHER DATA TYPES *
*g N
R e e A e A T A A i e i e o Rl B8 e M et el e ™ i e 0 WS el i e
L N
.‘.. A
L A

REPORT Z_OTHER_DATA_TYPES

AENRTANEMANANNENRNASAENRRNAEN.

Date and time fields are not stored as numeric data types, but instead as character data
types. Effectively, they are character strings which can be used in calculations. This is made
possible by the inbuilt automatic data type conversions which have previously been
discussed. Just like any other data type, the DATA statement is used to declare these fields.

For a date field, the data type is referred to with ‘d’, and is limited to 8 characters. The first
4 of these represent the year, the next 2 the month, and the final 2 the day. The VALUE
addition is used to specify this, and if it is not used then the value, by default, is assigned as
8 zeros. In the example below, the date is the 1% of January, 2012:

REPORT z_other data_types
* Date and Time Fields

* Dace fields format: YYYYMHDD with inictial wvalue of ‘06000000
DATA wy date TYPE d VALUE '20120101'.

AEXLERNEAERNIRRN 2NN AANEN?

WORKING WITH OTHER DATA TYPES

The LIKE statement, of course, can also be used. SY-DATUM is a system variable, which
always holds the value of the system’s date. Below, “my_date2” is defined in the same way
as this system variable:

DATA my dareZ LIKE SY-DATUNM.

Time fields work similarly, but this time are limited to 6 characters. The first 2 refer to the
hour, the second 2 the minute, and the final 2 the second. Again, the default value will be 6
zeros. The data type this time is ‘t’. Again, the LIKE statement can be used, here for the
system’s time field, referred to with SY-UZEIT:

* Time f£ields format: HAMHSS with initial wvalue of '000000

DATA my_time TYPE t© VALUE '1l11005',

DATA wy_timeZ LIKE sy-uzeit.

I AT A AT A AN AT A TR ENARA TN AN,

We can then use the WRITE statement to output the field contents:

WRITE: ny date,
/ my_date2,
/ my_time,
/ my_timez.
uline.

FERRER A TR TR ATRNTNTNNEANEN NN

01012012
00.00.0000
1110035
00:00:00

Note that in the first row the my_date field has reversed itself to the format DDMMYYYY.
In the second, no value was assigned to the field, so the system has output the default zeros.
However, as this was defined like the system’s date variable, it has included periods in the
formatting. This also applies to the my_time2 field, where colons have appeared between
the places where the time values would ordinarily be.

Date Fields in Calculations

WORKING WITH OTHER DATA TYPES

Some examples of performing calculations with date and time fields will now be looked at.
Using these fields in calculations is common practice within programming business sys-
tems, as one will often have to, for example, find the difference between two dates to de-
liver invoice dates, delivery dates and so on. Here, examples will be looked at so as to find
new dates, and find the difference between two dates.

Use the DATA statement to declare a start date for an employee, called “empl_sdate”, and
then give this a value of ‘20090515°. Then create another field called “todays date” and
define the value of this as ‘sy-datum’, the system variable, which should then include the
date on that particular day:

DATA empl_sdate TYPE d.
DATA todays_date TYPE d.

enpl sdate = '20080515°'.
todays_date = sy-datum.

Next, a calculation will be added, so as to work out this employee’s length of service. Cre-
ate a new variable named “LOS”, include a DATA statement giving “LOS” a data type ‘i’
and then define LOS as the calculation ‘todays date — empl sdate’. Then, add a WRITE
statement for this variable, which will include the employee’s length of service in the out-
put. Once this is complete, execute the code:

DATA todays_date TYPE d.
DATA LOS ctype 1.

empl sdate = '20090515'.
todays date = sy-datum.

los = vodays date - empl sdate.
fIRITE / los.

1,160

If one wants to add, for example, 20 days to today’s date, the same value is used for to-
days_date (the system variable, sy-datum). Create another variable, called “days_count”
with an integer value of 20, and another called “fut_date”. This variable’s value should then
be defined as ‘todays_date + days count’, then ad a WRITE statement to output the

WORKING WITH OTHER DATA TYPES

fut date. Don’t forget also to add the data types above (‘i’ for days count and ‘d’ for
fut_date). The output should give the date 20 days on from today’s date, which here is the
7" of August, 2012:

todays date = sy-datum,

days_count = 20.

fut_date = todays_date + days_count.
WRITE / fut_date.

DATA days_count TYPE 1.
DATA fut_date TYPE d.

.........................

07082012

Subfields can be used for date fields in exactly the same way as they were used before. In
the next example, a date field will be changed to represent the 20" day of the current month.
Copy the todays_date variable, then add a new line of code which changes the last two
figures of todays_date to the value ‘20°, and a WRITE statement. Also, output the sys- tem

date so as to compare the two:

tedays_date = sy-datum.
todays_ date+6(2) = '20'.
WRITE / sy-datum.

WRITE / todays_date,

18.07.2012
20072012

In this next example, the last day of the previous month will be established. Use the to-
days_date variable again, this time using the subfield method above to change this to rep-
resent the first day of the current month. Then on a new line of code, subtract one from this,
so that the todays_date variable is now the final day of the previous month:

todays_date = sy-datum.
todays_date+6{2} = '0l'.
todays_date = todays_date - 1.
WRITE / todays_date.

30062012

WORKING WITH OTHER DATA TYPES

Time Fields in Calculations
Calculations like those above can also be performed with time fields.

In the examples, employees’ clocking in and out times will be used. Use DATA statements
to declare the variables “clock in” and “clock out” as type ‘t’, along with others seen in the
image below, which will be used for calculations to work out the differences between times
in seconds, minutes and hours, all of an integer type:

Field for Time Calculations
DATA clock_in TYPE c.
DATA clock_out TYPE c.
DATA seconds_diff TYPE 1.
DATA minutes diff TYPE 1.
DATA hours_diff TYPE i.

Assign values to clock in and clock out of ‘073000’ and ‘160000 respectively. Then, to
work out the difference between the two in seconds, use the calculation ‘clock out -
clock in’ and assign this value to “seconds_diff”. Then include some WRITE statements to
output this information:

* TIME CALCULATIONS

clock_in = '073000°.

clock_out = '160000'.

seconds_diff = clock_out - clock_in.

WRITE: / 'clock in: ', cleock_in, ' clock our: ', clock_out.
WRITE / seconds_diff.

clock in: 073000 clock ouc: 16000

30,600

0

To establish the difference in minutes, simply use the seconds_diff value, and divide this by
60, and then to establish the hour’s difference, follow this by dividing minutes_diff by 60:

minutes diff = seconds_diff / 60.
WRITE: / 'difference in minutes: ', minutes_diff.

hours diff = minutes diff / 60.
WRITE: / 'difference in hours: ', hours diff.

WORKING WITH OTHER DATA TYPES

difference in minuces: 510
1 Y

£f
fference in hourss: 9

(=%

Note that here, the 510 minutes do not, in fact, equal 9 hours exactly, the system has
rounded the number. This is because the hours_diff variable was declared as an integer. If
the data type for this is changed to a packed decimal, the value would have been estab-
lished as the more accurate 8.5 hours:

VAIA WINUTES_O1LILC I¥¥E 1.
DATA hours_diff TYPE p decimals 2.

difference in hours: 8.50

Quantity and Currency Fields in Calculations

Now, a look will be taken at using quantity and currency fields in calculations. In ABAP,
these are treated the same as packed number fields. Currency fields must be declared as data
type ‘p’, bearing in mind how many decimal places are required. This is important, as
having the right number of decimal places can have a large impact on the accuracy of cal-
culations.

Quite often in a program, one wants to create one’s own variables for quantity and cur-
rency fields. It is usually better, however, to associate these fields with the data types of
those in a table created in the ABAP dictionary. This is because the ABAP dictionary will
already have defined the correct field length and number of decimal places for these. For
example, the Salary field in the table created previously had defined two decimal places. If
a currency field in a program is declared to match this field but the data type in the pro-
gram is set manually to 2 decimal places and the number of decimal places in the table was
to change, the program would no longer operate properly here. For this reason, it is usually
preferable to use the LIKE statement for these fields.

In this example a new variable named “my salary” has been declared using the LIKE
statement:

" Field for Currency Calculations
DATA my salary LIKE zemployees2-salary.

Because this field in the program is linked to the field in the table, the system will ensure
these data types are kept in sync. There are two aspects to this process, the number of

WORKING WITH OTHER DATA TYPES

decimal places, and the associated currency (or quantity) keys. If you look at the CURR
data type in the ABAP dictionary, you will see that this is stored as a decimal - 9 characters
and 2 decimal places. You can also see that its internal format is ABAP type p, packed
decimal:

. . .
{CURR i) Currercy field, stored as DEC

s e Fiabo Sald AANASIARARIN ok ol ma mleasfAN

Formatting

7 =t
Data type LCURR _’Ij r
No. characters g
Decimal places 2!

Internal format
ABAP type P

Additionally, don’t forget that the salary field and its currency data type always refer to the
currency key field, in the table called ECURRENCY. Ultimately, then, when one is de-
claring fields in ABAP, it is important to reference these to the associated fields in a table,
and when working with currencies, the currency key field will always be there and should
be taken into account. The same applies to quantity fields. The only difference is their data
type is QUAN, and rather than a currency key, will always have a UNIT associated with
them.

Now, using calculations from the currency field, an employee’s tax and net pay amounts
will be established, so declare two more DATA statements for these fields, again referenc-
ing the salary field in the table. Also add a tax percentage variable, of type p with 2 deci-
mals:

* Field for Currency
DATA my salary LIKE
DATA my tax_amt LIKE
DATA ny net pay LIKE
DATA tax_perc TYPE

Calculations
zeaployees2-salary.
zenployeesZ-salary.
zenployeesZ-salary.
p decimals 2.

Add a TABLES statement so that the program knows to refer to the ZEMPLOYEES2 table,

then observe the calculations in the code below:

WORKING WITH OTHER DATA TYPES

REPORT z_other data types

TABLES: zemployeesZ,

tax_perc = 0.20,
SELECT * FROM zemployeesZ.
WRITE: / zemployeesZ-surname, zemployeesZ-salary, zeumployeesZ-ecurrency.
my_tax amt = tax_perc * zemployeesZ-salary.
wy_nhet _pay = zemployeesZ-salary - my_tax_amt.
WRITE: / my_tax_amt, zemployeesZ-scurrency,
wy net pay, zemployeesZ-ecurrency.
EXDSELECT.

First, the tax percentage is established. This is in this example 20%, so for the means of the
calculations is written as 0.20. Then the code will select records from the ZEMPLOYEES2
table, and write the surnames, salaries and currencies for these. Next, the tax amount is
established, by multiplying the tax percentage by the salary. Net pay is equal to the salary,
minus the tax amount. Then add a WRITE statement to output the results the end of the
SELECT loop. The output should look like this (where salaries and currencies are not pre-

sent in the table, go back and edit the records in your table to put some values):

SMITH 1,111.00 ATS
222.20 ATS 888.80 ATS

EROWN 2,222.00 BODT
444.40 BDT 1,777.60 BDT

WILLIAMS 6,423.000 FJb
1,284.60 FdD 5,138.40 FJD

ROSE 12,345.00 USD
2,469,000 USSP 9,876.00 USD

GREEN 2,452.00 HUF
490.40 HUF 1,961,60 HUF

QWE 1,234.00 GBP
246.80 GBP 957.20 GBP

The surname, salary and currency for each record are written on the first line, followed by
the tax amount and net pay on the following line. To make this look tidier, descriptive text

can be added to the WRITE statements in the code:

WORKING WITH OTHER DATA TYPES

SMITH 1,111.00 ATS
tax amount: 222.20 XAT% net amount: 888.80 ATS
BROWN 2,222.00 BOT
tay amount: 444.40 BDT net amount: 1,777.60 BDT
WILLTIAMS 6,423.00. FID
tax amount: 1,284.60 FJD net amount: 5,138.40 FID
ROSE 12,345.00 USD
tax amount: 2,469,00 USD net amount: 9,876.00 USD
GREEN 2,452.00 HUF
tax apownt: 4%0.40 HUF net smount: 1,961.60 HUF
QWE 1,234.00 GBP

tax amownt: 246.80 GBF net smount: 937.20 GBP

WORKING WITH OTHER DATA TYPES

	UNIT – III
	Dr.A.DEVI
	Associate Professor
	Department of Computer Applications
	DRSNSRCAS
	Debugging Programs
	Fields mode
	System Variables
	Table Mode
	Breakpoints
	Static Breakpoints
	Watchpoints
	Ending a Debug Session

	Working with Database Tables
	Making a Copy of a Table
	Add New Fields
	Foreign Keys
	Append Structures
	Include Structures
	Key Fields
	Deleting Fields
	Deleting Tables

	Working with Other Data Types
	Date and Time Fields
	Date Fields in Calculations
	Time Fields in Calculations
	Quantity and Currency Fields in Calculations

