
  DEBUGGING PROGRAMS  
 

        

 

 

 

 

 

UNIT – III  

 

Dr.A.DEVI 

     Associate Professor  

Department of Computer Applications 

DRSNSRCAS 

 

 

 

 

 

 

 

 



  DEBUGGING PROGRAMS  
 

 

 

 

 

Debugging Programs 

 
This chapter will introduce the ABAP debugger, and will introduce some of the tools which 

can be used to ensure that the programs you create function as intended. It will also show 

ways to highlight logic bugs in programs that cannot be identified by the syntax checker. 
 

The first step here is to load a program which has been used previously, and which ac- 

cesses the database table which has been created regarding employee records. If you  have 

been following along with instructions, load program “Z_Employee_List_01” into the 

ABAP Editor. 
 

The program contains a number of SELECT loops, which in turn write the contents of the 

table being read to the output screen in several ways, separated by ULINE statements: 
 

 



  DEBUGGING PROGRAMS  
 

Having examined the code, return to the front screen of the ABAP editor. 



  DEBUGGING PROGRAMS  
 

Firstly, on this screen you will notice there is a ‘Debugging’ button in the toolbar (also ac- 

cessible with SHIFT+F5): 
 

 

Click this with the program name in the program input text box to start a new debugging 

session. When this opens, a blue arrow should be visible, pointing at the first line of code in 

the program: 
 

 

An alternative way of starting a debugging session is to display the code itself from the 

initial screen, select a line of code and set a breakpoint. This is done by, having selected a 

line, clicking the Stop icon:  

This sets a breakpoint for that line. When the program is then executed the execution will 

pause highlighting the line that has the Breakpoint set entering the debugging session. 

Usually, this is the easiest method to use, as one will often have a good idea of where the 



  DEBUGGING PROGRAMS  
 

issues in a program are allowing you to focus on specific areas of code straight away, rather 

than starting from the very beginning of a program as the previous method does: 
 

 

 

There are two types of breakpoint which can be set in a program. Static (which will be ex- 

amined later) and dynamic. A dynamic breakpoint is the kind which was used above, and 

these are only valid for the current session. If one leaves the SAP GUI and returns later, any 

dynamic breakpoints set will no longer exist. A breakpoint can also be set by double- 

clicking any statement within the debugging session itself. To then remove these in the 

session, simple double-click the stop icon appearing adjacent to them. 

You will notice that a number of buttons appear at the top of the debugging screen: 
 

 

These buttons allow for different modes of the ABAP debugger to be entered. The default 

mode here is Fields. 
 

The ‘Single step’ button, the first on the left in the row above the modes, also accessible 

with F5, allows one to go through the code within the debugger line-by-line, or indeed as its 

name would suggest, single steps. As one presses the button, the blue arrow on the left of 

the code will move down one line at a time. 
 

The next button along is the ‘Execute’ button, with a shortcut of F6. This allows for inde- 

pendent sections of code to be executed, such as function modules or forms. This can be 

very useful. If a program includes existing sections of code already created in an SAP sys- 



  DEBUGGING PROGRAMS  
 

tem which are known to be correct, there is no need to debug them. These can then be 

executed independently, while other parts are debugged to find specific problems. 
 

The next button is the ‘Return’ function (F7). This can be very useful if one forgets to use 

the ‘Execute’ function. If one goes through the lines of a program step-by-step, using the F5 

key to step into a working function module, which may contain many lines of code, it is 

likely the case that it does not need to be debugged (because you know this function module 

already exists). Pressing the F5 key endlessly to go through the lines of code here is 

unnecessary when one wants to step out of this function module and access the parts which 

require debugging. Using the ‘Return’ button, all of the code within a specific func- tion 

can be executed, returning to the line of code which calls that function. 
 

The fourth in the row is the ‘Continue’ option (F8). This allows one to continue the pro- 

gram without going through step-by-step, line-by-line. When this button is pressed, the 

program executes and the output screen is shown. This button can also be used to just 

access a selected line of code, where the cursor is positioned. If one positions the cursor in a 

line of code and presses continue, the blue arrow in the debugger will appear directly next 

to that line. If you then press continue again, the program will be executed. 
 

The next option in this row of the toolbar is ‘Display list’, accessible with CTRL+F12. This 

takes you to the output screen as it currently stands within the debug session. Here, the code 

has been executed to output the result of the first SELECT statement in the program: 
 

 

This function allows you to see the results of the reports whilst the program is in mid-flow. 
 

The last option here is ‘Create watchpoint’ (SHIFT + F8). Watchpoints will be returned to 

soon. 



  DEBUGGING PROGRAMS  
 

Fields mode 
The ‘Fields’ mode of the ABAP debugger allows the contents of fields to be checked and 

modified as the program is debugged. This can be accessed either by double-clicking the 

field name within the code itself, or entering it into the ‘Field names’ section below the 

code: 
 

 

Note that, since here a table is involved, in the field name section the name of the table 

must first be specified, followed by a -, then the name of the field. The field contents will be 

filled in automatically. As you step through code line-by-line in the SELECT loop, the text 

held in each field will change as each loop completes and moves onto the next record in the 

table. This section allows for 8 fields to be monitored at any time. Fields 5 - 8 can be made 

visible via the navigation buttons in the middle (to the right of the numbers 1 – 4). 
 

Often when debugging a program, you may want to manually change the contents of fields. 

This can be achieved by replacing the text in the field contents area, then clicking the 

‘Change field contents’ icon, marked with a pencil. Doing this can save a lot of time, 

avoiding having to exit the debugging session multiple times to enter new values into fields 

elsewhere: 



  DEBUGGING PROGRAMS  
 

 

 
 

System Variables 
At the bottom of the debugger screen, are 3 fields, named ‘SY-SUBRC’, ‘SY-TABIX’ and 

‘SY- DBCNT’: 
 

 

Note that the value boxes here are greyed-out, meaning that they cannot be changed 

manually. These are system fields, belonging to a table called SYST. This system table in- 

cludes many system fields which are filled in at runtime. These system fields are filled in 

automatically while the program is executed. Most statements within ABAP will cause 

these system fields to be filled with 0 when executed successfully. It is important to re- 

member that these fields are completely statement-dependent, meaning that they will 

contain different values depending on which statement is executed. These system codes and 

variables will be looked at in greater depth later. 

Table Mode 
The second mode along from the Fields button on the left of the screen is Table mode. Click 

this button and the code remains, but the bottom section changes to include an ‘In- ternal 

table’ entry, and a single row: 
 

 

Internal tables have not yet been covered in depth, but, put simply; an internal table is a 

table of records which is stored in memory while the program is running. Table mode al- 

lows one to interrogate the records and fields of each record in an internal table. As with 



  DEBUGGING PROGRAMS  
 

Fields mode, the internal table can either be double-clicked in the code, or manually en- 

tered into the ‘Internal table’ box. 
 

If one does this for “zemployees”, then, a new window appears, displaying the table 

name, its individual fields and their contents: 
 

 

Things do look slightly different to normal here, as a table structure is being shown, rather 

than an actual internal table. This results in the debugger showing the table structure as 

above, listing the individual fields numbered 1 – 6 and their contents. When viewing an 

internal table in this mode, one will see a number of records for each internal table with 

their contents. These records can then be double-clicked to move to the above layout, 

showing the individual fields for each record. This will be returned to later. 
 

In this screen, the code remains, but the area in which it is displayed is very small. One can 

continue to interrogate the code line-by-line as before still, but this may prove difficult. It is 

usually simpler to check Table mode for the information required, and then click back to 

Fields mode to continue the debug session. 



  DEBUGGING PROGRAMS  
 

Breakpoints 
Click the Breakpoint mode button in the ABAP debugger screen. This allows you to see a 

list of the individual breakpoints which have been set. Double-clicking any breakpoint in 

the Breakpoints table will remove that breakpoint from the list: 
 

 

This breakpoint table can be very useful, particularly when one is in a large program with 

many breakpoints set. It allows one to review the breakpoint, and allows for the removal of 

breakpoints which are no longer desired. 
 

It is important to remember that breakpoints (and indeed Watchpoints) are only valid for the 

length of the current debug session. When you exit your session, the breakpoints will be 

deleted. However, an option does exist allowing you to save breakpoints (and, again, 

Watchpoints) before closing a debug session, keeping them active for the next time the 

program is to be debugged, saving the hassle of recreating them. This is done by entering 



  DEBUGGING PROGRAMS  
 

the ‘Breakpoint’ menu in the top toolbar and choosing ‘Save’. All of the breakpoints saved 

will then remain until they are manually removed, or until the end of your SAP session. 
 

 

If one is in the ABAP editor, it is possible to see an overview of all the dynamic break- 

points set in the program by accessing the following menu option: Utilities  Breakpoints 

 Display: 
 



  DEBUGGING PROGRAMS  
 

 

 
 

The options at the bottom of this breakpoint table allow one to delete selected break- points 

without entering the debugger and breakpoints can be navigated to in the program itself 

(within the ABAP editor) by double clicking them in this table. 
 

Static Breakpoints 
Static breakpoints were briefly alluded to earlier. These refer to a line of code written into a 

program which forces the program to enter debug mode at the specific line chosen. To do 

this, the statement BREAK-POINT is used. When the code is executed, the debug ses- sion 

will start with the usual blue arrow cursor pointing at the location of the static break- point. 
 



  DEBUGGING PROGRAMS  
 

 

 
 

Once this statement is embedded in a program, it is active for all users. This is largely un- 

desirable, as others running the program, who do not want to debug the code, would be 

faced with the breakpoint set by an individual user. Be careful not to leave this statement 

line in programs which will be transported to other systems. 

Watchpoints 
Click the Watchpoints button in the ABAP debugger. The program code will be visible 

above the Watchpoints table in the lower half of the screen. Breakpoints have previously 

been discussed, and can be very useful, but are not always the ideal tool to use to pause 

code execution, interrogate the contents of individual fields and internal tables and ana- lyse 

the program’s logic. 
 

Imagine the program was processing a table containing 1000 records, and one wanted to 

debug the logic only when a certain condition occurs. This condition is dependent upon the 

data held in the records being processed. By using breakpoints, one would have to debug 

each individual record, obviously taking a huge amount of time. Here, Watchpoints become 

useful. Using these, one can tell the program to stop in the same manner that it would for a 

breakpoint, but instead of stopping at a specific line of code, it would stop based on the 

value in a field. In this example then, if this value occurred only in the 200th line of the 

table, a watchpoint would allow the first 199 records to be skipped over. 
 

A watchpoint is created with the ‘Create watchpoint’ button, seen above the list of modes in 

the Watchpoint mode screen, or with SHIFT + F8. 
 

Once this is done, a dialogue box will appear, with the program name filled in automati- 

cally. Here you need to enter the name of the field to be watched. In the 

Z_EMPLOYEE_LIST_01 example here, we will enter the surname field. The format is TA- 

BLE_NAME-FIELD_NAME. Next, the relational operator is to be set. In this example, a 

sur- 



  DEBUGGING PROGRAMS  
 

name with the value “Mills” will be sought, so the operator here is an =. This can be se- 

lected from a drop-down menu, where one can also view other potential relational opera- 

tors. The bottom field, then, should be filled in with the value to be watched for. 
 

Note that one does not have to use a specific value in the bottom field, but can get a 

watchpoint to compare a field against another field within the program. To do this the 

‘Comparison field’ box should be checked, and the field name typed into the box rather 

than a specific value. 
 

Click the green tick to continue and create the watchpoint, and the entry will have been 

added to the list at the bottom of the screen: 
 

 



  DEBUGGING PROGRAMS  
 

 

 
 

Observe the boxes below the Watchpoints list here. They are currently empty, but when the 

program is executed, it will pause once a value of ‘Mills’ is reached in the ‘surname’ field 

and this will be included in the box. 
 

The output before the program is executed looks like this: 
 

 

Note that the surname Mills appears in the fifth row down. When the program is executed 

with the ‘Mills’ watchpoint set, the first four records will be written to the screen before 

pausing at the fifth, when Mills is displayed. 
 

 

You will see that the blue arrow cursor has paused at the SELECT loop in the code. 



  DEBUGGING PROGRAMS  
 

 

 
 

Enter zemployees-surname in the Fields mode of the debugger to view the contents of the 

field. You will see the field contains “MILLS”. Also in the Watchpoints mode, the bottom 

field will now be filled: 
 

 

 

Ending a Debug Session 
There are two ways to stop debugging a program. The first is to use the F8 key to run the 

program all the way through to the end. Keep in mind though, that if any break or Watch- 

points are set, the execution will likely pause and have to be started again, perhaps multi- 

ple times. Also this method depends entirely upon the program executing successfully. If 

any runtime errors are caused, the debug session will terminate and return you to the SAP 

menu screen. 
 

The alternative way of stopping the debugger is to enter the ‘Debugging’ menu and choose 

‘Restart’. This way, no more of the program will be executed, and you can return to the 

ABAP Editor’s initial screen: 



  DEBUGGING PROGRAMS  
 

 

 



  ENHANCING DATABASE TABLES  
 

 

 

 Working with Database Tables 

 
Making a Copy of a Table 
This chapter will look at ways in which one can change the transparent tables created ear- 

lier. It is important to know how to do this, and the implications of adding and taking away 

fields for the underlying data in a database table. 
 

Let’s take a look at the ZEMPLOYEES table created in Chapter 2. In the SAP GUI, key in 

transaction code SE11 to access the ABAP dictionary, then display the table: 
 

 

It is important to realise that whenever one wants to change a database table, there is a risk 

of losing data, especially where key fields in the table are being affected. The database 

system itself will try to determine whether adjustments can be made by deleting and cre- 

ating new items which change the underlying database catalogue, or whether what has 

already defined has to be re-implemented. 
 

Quite often, when working with large tables, one has to manage the manipulation of the 

data oneself, so as to be sure that data is not lost. Deleting fields is quite a simple task, the 

table structure and its contents can add certain complications. Before starting any data- base 

change tasks, it is important to mitigate against as many risks as possible, and start 



  ENHANCING DATABASE TABLES  
 

by using a copy of the database table, allowing one to test out any changes one may want to 

make, without affecting the initial table and its underlying data. 
 

When you copy a database table, it is only the structure itself which is copied, meaning only 

its properties - fields and so on, not the actual data. 
 

Step back to the initial SE11 screen. With ZEMPLOYEES in the Database table field, click 

the Copy button, then give the new table of ZEMPLOYEES2. The ‘Create Object 

Directory Entry’ box will appear and as before, select ‘Local Object’: 
 

 

 

A copy of the table has now been created. Choose display at the SE11 screen and the copy 

will appear. The table’s status will read as ‘New’. It must be activated, so click the 

‘Change’ button (the Pencil icon in the toolbar), and then Activate: 
 

 

Note that all of the fields in the table, since they have been copied, are already active. This 

is why it is only the table itself which has to be activated here. If you try to look at the ta- 



  ENHANCING DATABASE TABLES  
 

ble, you will find there are no contents, because only the structure was copied, not the 

underlying data. To create records, from the ‘Utilities’ menu, select ‘Table Contents’ and 

then ‘Create Entries’ to display the screen where the records for the table can be created as 

before. 
 

 

Insert some records, click the Contents button, and then view the new table: 
 



  ENHANCING DATABASE TABLES  
 

 

 
 

Add New Fields 
Next, a new field will be added. This will be a non-key field and will be called INITIALS. 

 

Create a new Data element for this named ZINITIALS using forward navigation. For the 

data element, set the short text to ‘Initials’ and set the domain to CHAR03 (a character 

string of length 3). In the Field label boxes type ‘Initials’, then activate the Data element. 

The table should now have a new field like this: 
 

Create another 3 more new fields and configure them as follows:    

Field Name ‘GENDER’ 

o Set the Data element to ‘ZGENDER’. Configure the data element as follows: 

 Short text: ‘Gender’ 

 Domain: ‘CHAR01’ 

 Field labels set to ‘Gender’ 

   SALARY 

o Set the Data element to ZSALARY 

 Short text: ‘Salary’ 

 Domain: ‘CURR9’ (This has a length of 9, with 2 decimal places) 

 Field labels set to ‘Salary’. 
 

One thing to note about the Salary field is that, because it is a currency, another field for 

this currency must be created and attached to ZSALARY to indicate what currency the sal- 

ary is in. If you try to activate the table without doing this, an error message will appear 

asking for a reference field to specify the currency. 



  ENHANCING DATABASE TABLES  
 

Create a new field called ECURRENCY. Currency fields should already exist in the 

system, so the Data element here will be a pre-existing one named CURCY. Type this, 

press enter and the remaining fields should fill in automatically, leaving the new section of 

the table looking like this: 
 

 

Next, the system must be told that the Salary field is referencing the Currency field. Above 

the table will be able to see a tab labelled ‘Currency/Quantity Fields’. Click this and the 

table will be shown with two boxes to be filled in for the Salary field, since it has already 

been specified that the domain for this field is Currency. In the ‘Reference table’ column 

enter the name of the table, ‘ZEMPLOYEES2’ and in the ‘Reference field’ column, the 

name of the new Currency Key, ‘ECURRENCY’. Now the table can be activated error free. 
 

 

Foreign Keys 
As shown earlier enter a new record. You will see that the currency key does not offer any 

kind of drop-down menu, here for this example, type GBP, indicating Great British Pounds: 



  ENHANCING DATABASE TABLES  
 

 

 
 

Save the record, and then return to the design of the table, where we can now add some 

error-checking to ensure that valid entries are made in the Currency key field. 
 

To enable error-checking on the currency key field, we need to make use of a Foreign Key. 

These are used to ensure that only valid values can be entered into a field. Use forward 

navigation on the CURCY data element. Look at the Data type tab and you will see that the 

data element refers to a standard SAP domain, WAERS: 
 

 

Double-click the WAERS domain to use forward navigation again. Look at the ‘Value 

range’ tab in this window, a ‘Value table’ box is visible at the bottom, labelled TCURC: 
 



  ENHANCING DATABASE TABLES  
 

A Value table can be used to determine the entries that can be made in the field based on 

this domain. Double-click TCURC to again use forward navigation and this value table will 

be displayed. 
 

 

Use the data browser to look at the data in this table. If you scroll down, the GBP value 

from before can be found, among a number of others. This table can be used to ensure that, 

in future, only entries found in this table can be entered into our new table ZEM- 

PLOYEES2 
 



  ENHANCING DATABASE TABLES  
 

Return to the ‘Maintain table’ screen for ZEMPLOYEES2, highlight the ECURRENCY field, 

 
and click the Foreign key button visible in the toolbar above: 

 

Choose ‘Yes’ in the box which appears and a ‘Create Foreign Key’ window will emerge. 

Type the short text ‘Check Currency Field’. A small table is visible, detailing the two key 

fields from the TCURC table and the ZEMPLOYEES2 table. The option is available to 

ensure that the foreign key matches both fields, so that when the user is allowed to select an 

en- try, the records returned will only be valid for the Client which is being worked in. 
 

Here though, the Client is not to be chosen as part of the key, so select the Check-box 

‘Generic’ for the top row, which refers to the Client, and remove the text from the two 

boxes on this row where this is possible. Then click the ‘Copy’ button. The foreign key will 

be created: 
 



  ENHANCING DATABASE TABLES  
 

Activate the table, and then browse the data. Now, select the currency key and either press 

the F4 key or select the drop-down box that appears, displaying all valid entries for this 

field. If you were in record change mode you will then be able to select a value from the 

table and see it update your zemployees 2 record. Try it out and select USD (US Dol- lar). 
 



  ENHANCING DATABASE TABLES  
 

 

 
 

 
 

Append Structures 
Having looked at foreign keys, the next thing to look at are Append structures. These can be 

used to add additional fields. This is the preferred method for maintaining SAP deliv- ered 

tables and quite often for customer-specific tables. If one does not use Append struc- tures, 

problems can arise if, for example, a new version of SAP is used which does not cor- 

respond with aspects of the tables already created, resulting in serious errors. 
 

Append structures give a safe way to enhance tables. When these are used, the initial ta- ble 

remains unchanged, removing any risk of changes being overwritten later if a different 

version of SAP is used. Quite often, a table may have multiple Append structures applied to 

it, because different development needs have arisen as time has gone by and people have 

wanted to add further fields to the standard SAP tables. 
 

In the SE11 Maintain Table screen, go to the ‘Append structure’ button on the right of the 

top toolbar: 
 



  ENHANCING DATABASE TABLES  
 

Click this, and the system will suggest a name, ZAZEMPLOYEES2 (note that this, again, 

must begin with a Z). Accept this and you will be presented with what looks like an empty 

table structure. Enter the Short text “Extra Fields For Employees”, and then move down to 

the table. 
 

Note that the first field now is called ‘Component’. This is where new fields are created. 

However, it may be useful to differentiate between fields created in the main table, and the 

new components created here in the Append structure. Since both must comply with the 

customer name rules, where Z was used in the main table, here use ZZ. 
 

For the first component, a ‘Department’ field will be created. Type in the ‘Component’ box 

‘ZZDEPT’ and the same again in ‘Component type’. For this Component type, use forward 

navigation in the same way that it was used for the Data element before, double-clicking to 

create. Save the Append structure as a local object when prompted, and then select to create 

a Data element when prompted subsequently. 
 

The familiar data element screen will now appear. Type ‘Department’ for the short text, use 

CHAR10 for the domain and ‘Department’ again for the Field labels, then activate the data 

element. Step back to the Append structure screen, then Activate: 
 

 

Return to the main table screen, where a new row displaying the Append structure will have 

been created. To then access this structure, simply double-click the row. In Change mode 

only the ‘.APPEND’ line will be visible by default, but in Display mode the fields cre- ated 

within this will appear below: 



  ENHANCING DATABASE TABLES  
 

 

 
 

This is a very useful way to add new fields to a table without affecting the structure of the 

table itself. If one then browses the data as normal, a new column will have been called 

‘Department’. Data can then be entered into this field just like it can for any other: 
 

 

Include Structures 
Include structures are similar to Append structures, with the main difference being that they 

are re-usable objects and can be linked to many other tables, ABAP programs, dia- logue 

programs and structures. It is important to keep in mind that Include structures must be flat 

structures, meaning that they cannot hold any additional structure within them, and that the 

maximum length of the fields within an include structure is 16 charac- ters. 
 

There is no Include structure button in the way that there is an Append structure button. To 

create one, first ensure Change mode is selected. Where the cursor is placed is impor- tant 

here, as wherever the cursor is when the Include structure is created, it will be cre- ated one 

row above. If you want the Include structure to be part of the table key, it must appear at the 

top, because all table fields used as a table key need to be grouped together at the top. In 

this instance though, it will just be inserted above the Append structure. Place the cursor on 

the ‘.APPEND’ row, select the ‘Edit’ menu, then ‘Include’ and ‘Insert’. 
 



  ENHANCING DATABASE TABLES  
 

In the window that appears, enter ‘ZEMPL’ in the ‘Structure’ field and click the continue 

button. A warning box will appear stating that this is not yet active, dismiss this, and the 

Include structure should now appear in the table: 
 

 

 

To add a field to this, use forward navigation as before, double-clicking where ‘.INCLUDE 

ZEMPL’ appears, save and choose ‘Yes’ to create the structure. The screen which then ap- 

pears is very similar to the Append structure screen. 
 

Type the Short text “Employee Include” and begin to create a field (the boxes are, like in 

the Append structure, labelled ‘Component’), this time for location, called ZZLOCAT, and 

use ZLOCAT for the ‘Component type’. Use forward navigation again to create this Data 

element with Short text ‘Location’, the domain CHAR10 and ‘Location’ again for the Field 

labels, then Activate this as usual. Activate the Include structure once the field has been 

created and return to the main table to see the Include structure located just where we 

wanted it, above the Append structure: 
 

 

Activate the table now, and view the contents. The Location column should now be visi- 

ble, and these records can now be edited and created like any other: 



  ENHANCING DATABASE TABLES  
 

 

 
 

 

If one switches to Display mode, the field created in the Include structure can be seen in the 

context of the main table, albeit in a different colour: 



  ENHANCING DATABASE TABLES  
 

 

 
 

In Change mode, these fields can be seen by selecting the ‘.INCLUDE’ row and clicking 

the ‘Expand include’ icon (the same works for the Append structure also): 
 

 

Key Fields 
If you want to add or remove fields which are designated key fields, then it is important to 

take into consideration what will be going on in the database itself. All of the new ele- 

ments which have been created for this table have their features applied by the system to the 

ABAP dictionary, not the underlying database. When any key field is adjusted, the sys- tem 

has to apply changes to the underlying database itself. If there is data in the table,  and key 

fields are changed, this can have unintended consequences. 



  ENHANCING DATABASE TABLES  
 

If you introduce a new key field, this will probably not have a large effect. However, if one 

makes a key field no longer a key field, this will require consideration, because if there is a 

lot of data in the underlying database, by taking away a key field, duplicate records could 

be introduced. Corrupt data or records being deleted from the table can also happen here. 
 

Let’s see how we can add, remove and alter fields without these hazards. 
 

Open the full ZEMPLOYEES2 table in the ABAP Dictionary ‘Maintain Table’ screen. Let’s 

change the ‘Surname’ field by turning it into a key field. 
 

Check the two boxes (key and Index) by ‘SURNAME’ and Activate the table. When you 

now view the table contents, the surname column will be a darker colour, indicating that it 

is now a key field. Beyond this though, it appears very little has changed: 
 

 

 

Now, uncheck the boxes on the ‘Maintain Table’ screen, to make it no longer a key field. 

When you try to activate the table an error message appears, refusing to activate the ta- ble 

as data may be lost with the removal of a key field: 
 



  ENHANCING DATABASE TABLES  
 

To activate the table against what seem to be the wishes of the system (after all, one knows 

the data will be fine as the surname field has not been operating as a key field at any point 

previously), a different transaction must be used. 
 

From the ‘Utilities’ menu, select ‘Database utility’, or use transaction code SE14. A new 

screen will appear: 
 

 

This transaction lets us automatically adjust the data held in our table when making ad- 

justments to the database table structure. Environments where tables are being worked on 

may contain a huge number of records. With this in mind, this transaction can be exe- cuted 

as a background process. However, for our example the ‘Direct’ option is the option 



  ENHANCING DATABASE TABLES  
 

to choose because we know we have very few records in our database table. Select this, and 

then click ‘Activate and adjust database’ with ‘Save data’ radio button selected. Say ‘Yes’ 

when the box asks “Request: ‘Adjust’” and notice the status bar should indicate the success 

of this execution. Then, step back to the ‘Maintain Table’ screen and you will see the table 

should be Active with the surname field no longer key. 
 

To insert a new field as part of the table key, you must be able to adjust the location of 

fields on the screen. For example, if you wanted to create a new field above the surname 

field, you would highlight the row and then click the ‘Insert row’ icon in the toolbar. This 

toolbar also includes ‘Cut’, ‘Copy’ and ‘Paste’ options, allowing for rows to be moved up 

and down if there is a need to do this: 
 

 

 

Deleting Fields 
While infrequent, occasionally there may be a need to remove a field from a table. When 

doing this, it is important to take special care, as data can be lost in the process. Certainly in 

the case of key fields. 
 

If, for example, the Currency key field was removed from our table, the foreign key rela- 

tionship to the TCURC table would be removed. As the SALARY field has to have a 

related Currency Key this would cause the table to no longer continue working, and likely 

make the ZEMPLOYEES2 table become inactive. 
 

When deleting fields it is important to ask oneself whether the data being held in the table is 

being used elsewhere, and whether its deletion will have further consequences. If you do try 

to delete fields which are being used elsewhere, the SAP system should try to pre- vent this, 

or at least issue a stern warning. This is not necessarily to be relied upon though, so always 

ensure to check manually what the effects of deletion are likely to be. Also, if 



  ENHANCING DATABASE TABLES  
 

you do delete fields, the table will have to be adjusted via the SE14 transaction to be acti- 

vated again. 
 

Create a new field, above ‘.INCLUDE’, named ‘ZAWESOME’. Use a previously created Data 

element, here ZTITLE just to save time, and activate the table: 
 

 

Create a new record in the table. The data here is not important and will be deleted, so the 

content can be anything: 
 

 



  ENHANCING DATABASE TABLES  
 

Now, to delete the field, highlight it in the ‘Maintain Table’ screen, and click the ‘Remove 

row’ icon, in the toolbar next to ‘Insert row’. The row will disappear, but when you try to 

activate the table, an error message will appear: 
 

 

Transaction SE14 must again be used to adjust the table so the change can be applied. Fol- 

low the same steps as in the previous section to perform this task. Once this is complete, 

view the table again. The column has disappeared, and the data which was contained within 

it lost: 
 

 

To see what happens when a key field is deleted, return to the ABAP Dictionary initial 

screen and make a copy of ZEMPLOYEES2, called, unsurprisingly, ZEMPLOYEES3. 

Doing this will allow the ZEMPLOYEES2 table to not be damaged in this risky procedure. 

Activate the new table (which, don’t forget, will be empty of records). As before, again 

make the Sur- name field a key field. Now create some records for this table: 
 



  ENHANCING DATABASE TABLES  
 

To save time creating new records, the same data was replicated here, with only slight 

changes to the key fields. Remember that it is only one key field per entry which must be 

unique for that particularly record to be unique itself. 
 

Now, the surname field will be deleted, and the effects of deleting this key field observed. 

By removing this key field, the only unique data which will be held for each record will be 

the Employee Number and Client. Since SMITH and SMITH2, and ANDREWS and AN- 

DREWS-2 have the same Employee Number and Client, these will no longer hold unique 

key field data, leaving duplicate records, which the system will not allow. 
 

Remove the Surname field; try to activate the table, and error messages will appear. Go 

through SE14 to adjust the table for activation. When you now view the table, the Sur- 

name field is gone, and two records have been lost, leaving only one of the two records  for 

each of the two Employee Numbers used: 
 

 
 

Deleting Tables 
One will not often have to delete an entire database table, for largely the same reasons as 

were outlined above for fields. If this does have to be done it is important to remember that 

one’s own customer-specific tables are the only ones which can be deleted, SAP de- livered 

tables cannot be deleted. Because ZEMPLOYEES3 has only just been created, and nothing 

else depends on this table, it can be deleted without consequences. 
 

To check whether a table can be deleted without causing unintended consequences else- 

where in the system, return to the ABAP Dictionary’s initial screen. Because the original 

ZEMPLOYEES table was used in the programs which have been created, use this as a test. 
 

Insert this into the Database table field on the screen and then click the ‘Where-used list’ 

icon from the toolbar. 



  ENHANCING DATABASE TABLES  
 

 

 
 

Once this is clicked, a dialogue box will appear offering a list of check-boxes. This will 

then search all of the different areas of the SAP system selected for references to the table 

ZEMPLOYEES. To execute this search click the Continue icon. Choose ‘Yes’ to the pop-

up box, and wait while the system compiles the search results, which here show that this ta- 

ble is being used currently by 2 programs: 
 

 

Having done this, one now knows that if the ZEMPLOYEES table were to be deleted, these 

programs would become inactive. By double-clicking these entries, one can see the code  in 

the program where ZEMPLOYEES is referred to, and if you double-click on any line of  

the program, it will open the program at that line of code in the ABAP Editor. The Where- 

used button is a very useful tool, which can be invaluable not just when deleting pro- 

grams, but in many other scenarios. 
 

If you were to try to delete ZEMPLOYEES, the system would not allow this course of 

action and would prevent it from happening until all the programs that are dependent upon 

it were either edited to remove references or deleted altogether themselves. 
 

Since nothing depends upon ZEMPLOYEES3, this can be deleted. With the correct name in 

the ‘Database table’ field, click the ‘Delete’ button in the toolbar: 



  ENHANCING DATABASE TABLES  
 

 

 
 

A box appears stating that the data contained in the table would also be deleted. If you click 

the green tick icon this time, the system would return to the main screen with the table still 

intact. If the middle button, illustrated with the trashcan icon is clicked, this will proceed 

with the deletion. Once this is done, the status bar should confirm the action. If you try to 

display the table now, it does not exist. Once the deletion is completed, it can- not be 

undone: 
 

 



  WORKING WITH OTHER DATA TYPES  
 

 

 

 Working with Other Data Types 

 
Date and Time Fields 
This section will look at some other data types which can be used in ABAP. So far, numeric 

fields have been used for performing calculations, and character strings have been exam- 

ined along with the ways these can be manipulated with ABAP statements. Now, date and 

time fields will be looked at. 
 

Enter the ABAP editor (with transaction SE38) and make a copy of the previous program, 

alter the comment sections, and remove most of the code: 
 



  WORKING WITH OTHER DATA TYPES  
 

 

 
 

Date and time fields are not stored as numeric data types, but instead as character data 

types. Effectively, they are character strings which can be used in calculations. This is made 

possible by the inbuilt automatic data type conversions which have previously been 

discussed. Just like any other data type, the DATA statement is used to declare these fields. 
 

For a date field, the data type is referred to with ‘d’, and is limited to 8 characters. The  first 

4 of these represent the year, the next 2 the month, and the final 2 the day. The VALUE 

addition is used to specify this, and if it is not used then the value, by default, is assigned as 

8 zeros. In the example below, the date is the 1st of January, 2012: 
 



  WORKING WITH OTHER DATA TYPES  
 

The LIKE statement, of course, can also be used. SY-DATUM is a system variable, which 

always holds the value of the system’s date. Below, “my_date2” is defined in the same way 

as this system variable: 
 

 

Time fields work similarly, but this time are limited to 6 characters. The first 2 refer to the 

hour, the second 2 the minute, and the final 2 the second. Again, the default value will be 6 

zeros. The data type this time is ‘t’. Again, the LIKE statement can be used, here for the 

system’s time field, referred to with SY-UZEIT: 
 

 

We can then use the WRITE statement to output the field contents: 
 

 

 

Note that in the first row the my_date field has reversed itself to the format DDMMYYYY. 

In the second, no value was assigned to the field, so the system has output the default zeros. 

However, as this was defined like the system’s date variable, it has included periods in the 

formatting. This also applies to the my_time2 field, where colons have appeared between 

the places where the time values would ordinarily be. 
 

Date Fields in Calculations 



  WORKING WITH OTHER DATA TYPES  
 

Some examples of performing calculations with date and time fields will now be looked at. 

Using these fields in calculations is common practice within programming business sys- 

tems, as one will often have to, for example, find the difference between two dates to de- 

liver invoice dates, delivery dates and so on. Here, examples will be looked at so as to find 

new dates, and find the difference between two dates. 
 

Use the DATA statement to declare a start date for an employee, called “empl_sdate”, and 

then give this a value of ‘20090515’. Then create another field called “todays_date” and 

define the value of this as ‘sy-datum’, the system variable, which should then include the 

date on that particular day: 
 

 

 

Next, a calculation will be added, so as to work out this employee’s length of service. Cre- 

ate a new variable named “LOS”, include a DATA statement giving “LOS” a data type ‘i’  

and then define LOS as the calculation ‘todays_date – empl_sdate’. Then, add a WRITE 

statement for this variable, which will include the employee’s length of service in the out- 

put. Once this is complete, execute the code: 
 

 

 

 

If one wants to add, for example, 20 days to today’s date, the same value is used for to- 

days_date (the system variable, sy-datum). Create another variable, called “days_count” 

with an integer value of 20, and another called “fut_date”. This variable’s value should then 

be defined as ‘todays_date + days_count’, then ad a WRITE statement to output the 



  WORKING WITH OTHER DATA TYPES  
 

fut_date. Don’t forget also to add the data types above (‘i’ for days_count and ‘d’ for 

fut_date). The output should give the date 20 days on from today’s date, which here is the 

7th of August, 2012: 
 

 

 

Subfields can be used for date fields in exactly the same way as they were used before. In 

the next example, a date field will be changed to represent the 20th day of the current month. 

Copy the todays_date variable, then add a new line of code which changes the last two 

figures of todays_date to the value ‘20’, and a WRITE statement. Also, output the sys- tem 

date so as to compare the two: 
 

 

 

In this next example, the last day of the previous month will be established. Use the to- 

days_date variable again, this time using the subfield method above to change this to rep- 

resent the first day of the current month. Then on a new line of code, subtract one from this, 

so that the todays_date variable is now the final day of the previous month: 
 

 



  WORKING WITH OTHER DATA TYPES  
 

Time Fields in Calculations 
Calculations like those above can also be performed with time fields. 

 

In the examples, employees’ clocking in and out times will be used. Use DATA statements 

to declare the variables “clock_in” and “clock_out” as type ‘t’, along with others seen in the 

image below, which will be used for calculations to work out the differences between times 

in seconds, minutes and hours, all of an integer type: 
 

 

Assign values to clock_in and clock_out of ‘073000’ and ‘160000’ respectively. Then, to 

work out the difference between the two in seconds, use the calculation ‘clock_out - 

clock_in’ and assign this value to “seconds_diff”. Then include some WRITE statements to 

output this information: 
 

 

 

To establish the difference in minutes, simply use the seconds_diff value, and divide this by 

60, and then to establish the hour’s difference, follow this by dividing minutes_diff by 60: 
 



  WORKING WITH OTHER DATA TYPES  
 

 

 
 

Note that here, the 510 minutes do not, in fact, equal 9 hours exactly, the system has 

rounded the number. This is because the hours_diff variable was declared as an integer. If 

the data type for this is changed to a packed decimal, the value would have been estab- 

lished as the more accurate 8.5 hours: 
 

 

 

Quantity and Currency Fields in Calculations 
Now, a look will be taken at using quantity and currency fields in calculations. In ABAP, 

these are treated the same as packed number fields. Currency fields must be declared as data 

type ‘p’, bearing in mind how many decimal places are required. This is important, as 

having the right number of decimal places can have a large impact on the accuracy of cal- 

culations. 
 

Quite often in a program, one wants to create one’s own variables for quantity and cur- 

rency fields. It is usually better, however, to associate these fields with the data types of 

those in a table created in the ABAP dictionary. This is because the ABAP dictionary will 

already have defined the correct field length and number of decimal places for these. For 

example, the Salary field in the table created previously had defined two decimal places. If 

a currency field in a program is declared to match this field but the data type in the pro- 

gram is set manually to 2 decimal places and the number of decimal places in the table was 

to change, the program would no longer operate properly here. For this reason, it is usually 

preferable to use the LIKE statement for these fields. 
 

In this example a new variable named “my_salary” has been declared using the LIKE 

statement: 
 

 

Because this field in the program is linked to the field in the table, the system will ensure 

these data types are kept in sync. There are two aspects to this process, the number of 



  WORKING WITH OTHER DATA TYPES  
 

decimal places, and the associated currency (or quantity) keys. If you look at the CURR 

data type in the ABAP dictionary, you will see that this is stored as a decimal - 9 characters 

and 2 decimal places. You can also see that its internal format is ABAP type p, packed 

decimal: 
 

 

 

 

Additionally, don’t forget that the salary field and its currency data type always refer to the 

currency key field, in the table called ECURRENCY. Ultimately, then, when one is de- 

claring fields in ABAP, it is important to reference these to the associated fields in a table, 

and when working with currencies, the currency key field will always be there and should 

be taken into account. The same applies to quantity fields. The only difference is their data 

type is QUAN, and rather than a currency key, will always have a UNIT associated with 

them. 
 

Now, using calculations from the currency field, an employee’s tax and net pay amounts 

will be established, so declare two more DATA statements for these fields, again referenc- 

ing the salary field in the table. Also add a tax percentage variable, of type p with 2 deci- 

mals: 
 

 

Add a TABLES statement so that the program knows to refer to the ZEMPLOYEES2 table, 

then observe the calculations in the code below: 



  WORKING WITH OTHER DATA TYPES  
 

 

 
 

 

First, the tax percentage is established. This is in this example 20%, so for the means of the 

calculations is written as 0.20. Then the code will select records from the ZEMPLOYEES2 

table, and write the surnames, salaries and currencies for these. Next, the tax amount is 

established, by multiplying the tax percentage by the salary. Net pay is equal to the salary, 

minus the tax amount. Then add a WRITE statement to output the results the end of the 

SELECT loop. The output should look like this (where salaries and currencies are not pre- 

sent in the table, go back and edit the records in your table to put some values): 
 

 

The surname, salary and currency for each record are written on the first line, followed by 

the tax amount and net pay on the following line. To make this look tidier, descriptive text 

can be added to the WRITE statements in the code: 



  WORKING WITH OTHER DATA TYPES  
 

 

 



  WORKING WITH OTHER DATA TYPES  
 

 


	UNIT – III
	Dr.A.DEVI
	Associate Professor
	Department of Computer Applications
	DRSNSRCAS
	Debugging Programs
	Fields mode
	System Variables
	Table Mode
	Breakpoints
	Static Breakpoints
	Watchpoints
	Ending a Debug Session

	Working with Database Tables
	Making a Copy of a Table
	Add New Fields
	Foreign Keys
	Append Structures
	Include Structures
	Key Fields
	Deleting Fields
	Deleting Tables

	Working with Other Data Types
	Date and Time Fields
	Date Fields in Calculations
	Time Fields in Calculations
	Quantity and Currency Fields in Calculations


